Automatic post-editing (APE) systems aim to correct the systematic errors made by machine translators. In this paper, we propose a neural APE system that encodes the source (src) and machine translated (mt) sentences with two separate encoders, but leverages a shared attention mechanism to better understand how the two inputs contribute to the generation of the post-edited (pe) sentences. Our empirical observations have showed that when the mt is incorrect, the attention shifts weight toward tokens in the src sentence to properly edit the incorrect translation. The model has been trained and evaluated on the official data from the WMT16 and WMT17 APE IT domain English-German shared tasks. Additionally, we have used the extra 500K artificial data provided by the shared task. Our system has been able to reproduce the accuracies of systems trained with the same data, while at the same time providing better interpretability.
Neural machine translation models are often biased toward the limited translation references seen during training. To amend this form of overfitting, in this paper we propose fine-tuning the models with a novel training objective based on the recently-proposed BERTScore evaluation metric. BERTScore is a scoring function based on contextual embeddings that overcomes the typical limitations of n-gram-based metrics (e.g. synonyms, paraphrases), allowing translations that are different from the references, yet close in the contextual embedding space, to be treated as substantially correct. To be able to use BERTScore as a training objective, we propose three approaches for generating soft predictions, allowing the network to remain completely differentiable end-to-end. Experiments carried out over four, diverse language pairs have achieved improvements of up to 0.58 pp (3.28%) in BLEU score and up to 0.76 pp (0.98%) in BERTScore (F BERT ) when finetuning a strong baseline.
Neural machine translation models are often biased toward the limited translation references seen during training. To amend this form of overfitting, in this paper we propose fine-tuning the models with a novel training objective based on the recently-proposed BERTScore evaluation metric. BERTScore is a scoring function based on contextual embeddings that overcomes the typical limitations of n-gram-based metrics (e.g. synonyms, paraphrases), allowing translations that are different from the references, yet close in the contextual embedding space, to be treated as substantially correct. To be able to use BERTScore as a training objective, we propose three approaches for generating soft predictions, allowing the network to remain completely differentiable end-to-end. Experiments carried out over four, diverse language pairs have achieved improvements of up to 0.58 pp (3.28%) in BLEU score and up to 0.76 pp (0.98%) in BERTScore (F BERT ) when finetuning a strong baseline.
To date, most abstractive summarisation models have relied on variants of the negative loglikelihood (NLL) as their training objective. In some cases, reinforcement learning has been added to train the models with an objective that is closer to their evaluation measures (e.g. ROUGE). However, the reward function to be used within the reinforcement learning approach can play a key role for performance and is still partially unexplored. For this reason, in this paper, we propose two reward functions for the task of abstractive summarisation: the first function, referred to as RwB-Hinge, dynamically selects the samples for the gradient update. The second function, nicknamed RISK, leverages a small pool of strong candidates to inform the reward. In the experiments, we probe the proposed approach by fine-tuning an NLL pre-trained model over nine summarisation datasets of diverse size and nature. The experimental results show a consistent improvement over the negative loglikelihood baselines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.