Semantic Textual Similarity (STS) measures the meaning similarity of sentences. Applications include machine translation (MT), summarization, generation, question answering (QA), short answer grading, semantic search, dialog and conversational systems. The STS shared task is a venue for assessing the current state-of-the-art. The 2017 task focuses on multilingual and cross-lingual pairs with one sub-track exploring MT quality estimation (MTQE) data. The task obtained strong participation from 31 teams, with 17 participating in all language tracks. We summarize performance and review a selection of well performing methods. Analysis highlights common errors, providing insight into the limitations of existing models. To support ongoing work on semantic representations, the STS Benchmark is introduced as a new shared training and evaluation set carefully selected from the corpus of English STS shared task data (2012)(2013)(2014)(2015)(2016)(2017).
In semantic textual similarity (STS), systems rate the degree of semantic equivalence between two text snippets. This year, the participants were challenged with new datasets in English and Spanish. The annotations for both subtasks leveraged crowdsourcing. The English subtask attracted 29 teams with 74 system runs, and the Spanish subtask engaged 7 teams participating with 16 system runs. In addition, this year we ran a pilot task on interpretable STS, where the systems needed to add an explanatory layer, that is, they had to align the chunks in the sentence pair, explicitly annotating the kind of relation and the score of the chunk pair. The train and test data were manually annotated by an expert, and included headline and image sentence pairs from previous years. 7 teams participated with 29 runs.
The final goal of Interpretable Semantic Textual Similarity (iSTS) is to build systems that explain which are the differences and commonalities between two sentences. The task adds an explanatory level on top of STS, formalized as an alignment between the chunks in the two input sentences, indicating the relation and similarity score of each alignment. The task provides train and test data on three datasets: news headlines, image captions and student answers. It attracted nine teams, totaling 20 runs. All datasets and the annotation guideline are freely available 1
Following the recent success of word embeddings, it has been argued that there is no such thing as an ideal representation for words, as different models tend to capture divergent and often mutually incompatible aspects like semantics/syntax and similarity/relatedness. In this paper, we show that each embedding model captures more information than directly apparent. A linear transformation that adjusts the similarity order of the model without any external resource can tailor it to achieve better results in those aspects, providing a new perspective on how embeddings encode divergent linguistic information. In addition, we explore the relation between intrinsic and extrinsic evaluation, as the effect of our transformations in downstream tasks is higher for unsupervised systems than for supervised ones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.