Endophytes are fungi which infect plants without causing symptoms. Fungi belonging to this group are ubiquitous, and plant species not associated to fungal endophytes are not known. In addition, there is a large biological diversity among endophytes, and it is not rare for some plant species to be hosts of more than one hundred different endophytic species. Different mechanisms of transmission, as well as symbiotic lifestyles occur among endophytic species. Latent pathogens seem to represent a relatively small proportion of endophytic assemblages, also composed by latent saprophytes and mutualistic species. Some endophytes are generalists, being able to infect a wide range of hosts, while others are specialists, limited to one or a few hosts. Endophytes are gaining attention as a subject for research and applications in Plant Pathology. This is because in some cases plants associated to endophytes have shown increased resistance to plant pathogens, particularly fungi and nematodes. Several possible mechanisms by which endophytes may interact with pathogens are discussed in this review.
Holcus lanatus is a grass that grows in humid, often waterlogged soils in temperate zones around the world. The purpose of this work was to identify fungal endophytes associated with its roots and leaves, and to describe the diversity and spatial distribution patterns found in its mycobiota. Holcus plants were sampled at 11 locations in western and northern Spain, and endophytes were isolated from leaves and roots of each plant. Morphological and molecular methods based on the ITS1-5.8SrRNA-ITS2 sequence were used for isolate identification. In total, 134 different species were identified, 77 occurred in leaves, 79 in roots, and 22 were common to both organs. The dominant species of the mycobiota were isolated from roots and leaves, and were species generally considered as multi-host endophytes. The species richness was similar in leaves and roots, but the composition of isolates from roots varied more among locations than in leaf mycobiotas, suggesting that soil characteristics may have strongly influenced the root mycobiota. Significant variations with respect to the composition of their mycobiota among different locations indicate that beta diversity is a first order factor governing the richness and distribution of the endophytic mycobiota in grasses.
Near-infrared reflectance spectroscopy was applied to determine nitrogen (N), phosphorus (P) and calcium (Ca) content in leaf samples of 18 woody species. A total of 183 samples from mountain, riparian and dry areas from the Central-Western Iberian Peninsula were collected for this purpose. The wide intervals of variation observed in nutrient concentrations (6.6-45.0 g kg(-1) for N, 0.24-2.97 g kg(-1) for P, and 1.00-20.06 g kg(-1) for Ca) were due to the great heterogeneity of the samples. To develop calibration equations, multiple linear regression, and partial least-squares regression (PLSR) were used. In both cases, three mathematical transformations of the data were applied: log1/R and first and second derivatives. The best calibration statistics were obtained using PLSR and derivative transformations (second derivative for N and first derivative for P and Ca). The following coefficients of multiple determination (R2) and standard errors of cross validation were obtained: 0.99 and 0.93 for N, 0.94 and 0.15 for P, and 0.95 and 0.88 for Ca. In the external validation the standard errors of prediction obtained were 0.76 (N), 0.11 (P) and 0.60 (Ca).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.