In this paper, an attempt is made to prove that some similarity based fuzzy systems can be found to behave as function approximators. A typical similarity based fuzzy system is proposed and its behaviour is shown to have the said property. It elucidates the connection between similarity relation and similarity measure of fuzzy sets to fuzzy inference methodology. The concept of similarity relation is used in fuzzification of crisp input values. Similarity index is used in measuring approximate equality of fuzzy sets over a given universe of discourse of a linguistic variable. The similarity between the observation(s) and the antecedent of a rule is used in selecting rule(s) for possible firing and also in modifying the relation between the antecedent and consequent of the rule based on the specific observation. Inference is drawn through the usual composition and subsequently by projecting the modified fuzzy restriction acting on the variables of interest on the universe of the linguistic variable in the consequent of the rule. A specificity based defuzzification scheme is proposed for multiple-rule firing. It has been proved systematically that such a similarity based fuzzy system can uniformly approximate continuous functions to any desired degree of accuracy on a closed and bounded interval. Simulation results are presented for the well-known dc-motor problem. A comparative study is made to establish the validity and efficiency of the proposed similarity based fuzzy system.
In this paper, an attempt is made to study approximate reasoning based on a Type-2 fuzzy set theory. In the process, we have examined the underlying fuzzy logic structure on which the reasoning is formulated. We have seen that the partial/incomplete/imprecise truth-values of elements of a type-2 fuzzy set under consideration forms a lattice. We propose two new lattice operations which ultimately help us to define a residual and thereby making the structure of truth- values a residuated lattice. We have focused upon two typical rules of inference used mostly in ordinary approximate reasoning methodology based on Type-1 fuzzy set theory. Our proposal is illustrated with typical artificial examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.