Rap1 is rapidly activated upon chemoattractant stimulation and plays an important role in cell adhesion and cytoskeletal reorganization during chemotaxis. Here, we demonstrate that G-protein coupled receptors and G-proteins are essential for chemoattractant-mediated Rap1 activation in Dictyostelium. The rapid Rap1 activation upon cAMP chemoattractant stimulation was absent in cells lacking chemoattractant cAMP receptors cAR1/cAR3 or a subunit of the heterotrimeric G-protein complex Gα2. Loss of guanylyl cyclases GCA/SGC or a cGMP-binding protein GbpC exhibited no effect on Rap1 activation kinetics. These results suggest that Rap1, a key regulator for the regulation of cytoskeletal reorganization during cell movement, is activated through the G-protein coupled receptors cAR1/cAR3 and Gα2 proteins in a way independent of the cGMP signaling pathway.
Cortexillins are actin-bundling proteins that play a critical role in regulating cell morphology and actin cytoskeleton reorganization in Dictyostelium. Here, we investigated dynamic subcellular localization of cortexillin I in chemotaxing Dictyostelium cells. Most of the cortexillin I was enriched on the lateral sides of moving cells. Upon chemoattractant stimulation, cortexillin I was rapidly released from the cortex followed by a transient translocation to the cell cortex with a peak at ~5 s and a subsequent decrease to basal levels, indicating that localization of cor-texillin I at the cortex in chemotaxing cells is controlled by two more signaling components, one for the initial delocalization from the cortex and another for the translocation to the cortex ~5 s after chemoattractant stimulation. Loss of cortexillins leads to reduced cell polarity and an in-creased number of lateral pseudopodia during chemotaxis, suggesting that cortexillins play an inhibitory role in producing pseudopodia along the lateral sides of the cell. Cells lacking cortexillins displayed extended chemoattrac-tantmediated Arp2/3 complex translocation kinetics to the cortex. Our present study provides a new insight into the function of cortexillins during reorganization of the actin cytoskeleton and cell migration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.