European colonization of North America severely altered terrestrial and aquatic ecosystems alike. Here, we integrate archaeological, historical, and recent data to derive the ecological history of the Quoddy Region, Bay of Fundy, Canada, an upwelling region rich in marine diversity and productivity. We document successive changes on all trophic levels from primary producers to top predators over the last centuries. Our objectives were to (1) construct a baseline of “what was natural in the coastal ocean,” and (2) analyze the sequence and potential interaction of multiple human impacts.
Archaeological records highlight the abundance and diversity of marine species used by indigenous people over the last 2000–3000 years. Europeans colonized the area in the late 1700s and rapidly transformed the environment by multiple “top‐down” (exploitation), “bottom‐up” (nutrient loading), and “side‐in” (habitat destruction, pollution) impacts. Most large vertebrates were severely overexploited by 1900, leading to the extinction of three mammal and six bird species. Diadromous fish dramatically declined after river damming in the early 1800s, and recovery was prevented by subsequent river pollution. Overfishing of groundfish stocks started in the late 1800s, gradually leading to a final collapse in the 1970s. In the 20th century, decline of traditional fisheries induced a shift to low trophic level harvesting and aquaculture, which increased exponentially over the past 20 years. Eutrophication caused shifts in seaweed and phytoplankton communities: Some long‐lived rockweeds were replaced by annual bloom‐forming algae, and diatoms were replaced by dinoflagellates.
Today, the once unique Quoddy Region shows the most common signs of degradation found in highly impacted coastal areas worldwide. Multiple human influences have altered abundance and composition of every trophic level in the food web and reduced upper trophic levels by at least one order of magnitude. We highlight cumulative and indirect effects that impair the ability to predict and manage highly impacted coastal ecosystems. On the other hand, simple protection and restoration measures in the 20th century led to the recovery of some species. It is these successes that provide guidance for a more sustainable interaction of humans with their marine environment.
Harvesting wild seaweeds has a long history and is still relevant today, even though aquaculture now supplies >96% of global seaweed production. Current wild harvests mostly target canopy-forming kelp, rockweed and red macroalgae that provide important ecosystem roles, including primary production, carbon storage, nutrient cycling, habitat provision, biodiversity and fisheries support. Harvest methods range from selective hand-cutting to bottom trawling. Resulting ecosystem impacts depend on extraction method and scale, ranging from changes in primary production to habitat disruption, fragmentation, food-web alterations and bycatch of non-target species. Current management often aims for sustainable harvesting in a single-species context, although some agencies acknowledge the wider ecosystem structure, functions and services seaweeds provide. We outline potential ecosystem-based management approaches that would help sustain productive and diverse seaweed-based ecosystems. These include maintaining high canopy biomass, recovery potential, habitat structure and connectivity, limiting bycatch and discards, while incorporating seasonal closures and harvest-exclusion zones into spatial management plans. Other sustainability considerations concern monitoring, enforcement and certification standards, a shift to aquaculture, and addressing cumulative human impacts, invasive species and climate change. Our review provides a concise overview on how to define and operationalize ecosystem-based management of seaweed harvesting that can inform ongoing management and conservation efforts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.