Context Biodiversity and ecosystem functioning underpins the delivery of all ecosystem services and should be accounted for in all decision-making related to the use of natural resources and areas. However, biodiversity and ecosystem services are often inadequately accounted for in land use management decisions. Objective We studied a boreal forest ecosystem by linking citizen-science bird data with detailed information on forest characteristics from airborne laser scanning (ALS). In this paper, we describe this method, and evaluate how similar kinds of biological data sets combined with remote sensing can be used for ecosystem assessments at landscape scale. Methods We analysed data for 41 boreal forest bird species and for 14 structural ALS-based forest parameters.Results The results support the use of the selected method as a basis for quantifying spatially-explicit biodiversity indicators for ecosystem assessments, while suggestions for improvements are also reported. Finally, we evaluate the capacity of those indicators to describe biodiversity-ecosystem service relationships, for example with carbon trade-offs. The results showed clear distinctions between the different species as measured, for example, by above-ground forest biomass at the observation sites. We also assess how Electronic supplementary material The online version of this article
Detection of the need for seedling stand tending using high-resolution remote sensing data Korhonen L., Pippuri I., Packalén P., Heikkinen V., Maltamo M., Heikkilä J. (2013). Detection of the need for seedling stand tending using high-resolution remote sensing data. Silva Fennica vol. 47 no. 2 article id 952. 20 p.
AbstractSeedling stands are problematic in airborne laser scanning (ALS) based stand level forest management inventories, as the stem density and species proportions are difficult to estimate accurately using only remotely sensed data. Thus the seedling stands must still be checked in the field, which results in an increase in costs. In this study we tested an approach where ALS data and aerial images are used to directly classify the seedling stands into two categories: those that involve tending within the next five years and those which involve no tending. Standard ALS-based height and density features, together with texture and spectral features calculated from aerial images, were used as inputs to two classifiers: logistic regression and the support vector machine (SVM). The classifiers were trained using 208 seedling plots whose tending need was estimated by a local forestry expert. The classification was validated on 68 separate seedling stands. In the training data, the logistic model's kappa coefficient was 0.55 and overall accuracy (OA) 77%. The SVM did slightly better with a kappa = 0.71 and an OA = 86%. In the stand level validation data, the performance decreased for both the logistic model (kappa = 0.38, OA = 71%) and the SVM (kappa = 0.37, OA = 72%). Thus our approach cannot totally replace the field checks. However, in considering the stands where the logistic model predictions had high reliability, the number of misclassifications reduced drastically. The SVM however, was not as good at recognizing reliable cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.