Through the previous study a hydrothermal polymerization (HTP)—a catalytic methodology for treating various biomass and organic wastes—has been developed on a lab scale with a 1 L reactor and the results published. The research work described herein aims to ensure that the catalytic process is scalable for pilot and even commercial scale plants. A 1700 L binary reactor system has been built and the assumptions of a commercial scale plant that would have 10,000 to 20,000 L pressure vessels tested. The HTP catalytic biofuel process converts mono- and polysaccharides into a solid polymer fuel that is based on a furfuraldehyde ring system. The calorific value of the material obtained from the pilot plant is on the order of 27 MJ/kg and the material typically has low ash and fixed carbon content order of 48% which are about same as the lab results for various wood biomass feedstocks. Though a 1700 times scale up binary reactor system the scalability of the HTP catalytic methodology has been confirmed and the mass and energy balance of the binary reactor identified in order to provide fundamental data for commercial scale establishment in future.
Hybrid hydrothermal carbonization (Hybrid HTC) technology is a proprietary thermochemical process for two or more organic wastes.The reaction time is less than two hours with temperature range 180~250℃ and pressure range 20~40bar. Thanks to accumulation of the carbon of the waste during Hybrid HTC process, the energy value of the solid fuel increases significantly with comparatively low energy consumption. It has also a great volume reduction with odor removal effect so that it is evaluated as the best solid fuel conversion technology for various organic wastes. In this study of the hybrid hydrothermal carbonization, the effect on the calorific value and yield of Cambodian mango waste were evaluated according to changes in temperature and reaction time. Through the study, parameter optimization has been sought with improving energy efficiency of the whole plant. It is decomposed in the Hydro-Carbonation Technology to Generate Gas. At this time, it is possible to develop manufacturing and production technologies such as hydrogen (H 2 ) and methane (CH 4 ). Based on the results of the study, a pilot plant (2t/day) has been proposed for future commercialization purpose along cost analysis, mass balance and energy balance calculations.
Hybrid hydrothermal carbonization (Hybrid HTC) technology is a proprietary thermochemical process for two or more organic wastes.The reaction time is less than two hours with temperature range 180~250℃ and pressure range 20~40bar. Thanks to accumulation of the carbon of the waste during Hybrid HTC process, the energy value of the solid fuel increases significantly with comparatively low energy consumption. It has also a great volume reduction with odor removal effect so that it is evaluated as the best solid fuel conversion technology for various organic wastes. In this study of the hybrid hydrothermal carbonization, the effect on the calorific value and yield of Cambodian mango waste were evaluated according to changes in temperature and reaction time. Through the study, parameter optimization has been sought with improving energy efficiency of the whole plant. It is decomposed in the Hydro-Carbonation Technology to Generate Gas. At this time, it is possible to develop manufacturing and production technologies such as hydrogen (H 2 ) and methane (CH 4 ). Based on the results of the study, a pilot plant (2t/day) has been proposed for future commercialization purpose along cost analysis, mass balance and energy balance calculations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.