Purpose. To evaluate the intrasession repeatability of corneal curvature, eccentricity, and aberrometric measurements obtained with a multidiagnostic device in healthy eyes. Methods. This study enrolled 107 eyes of 107 patients ranging in age from 23 to 65 years. All of them underwent a complete anterior segment examination with the VX120 system (Visionix-Luneau Technologies, Chartres, France). Three consecutive measurements were obtained. The within-subject standard deviation (Sw), intrasubject precision (1.96 × Sw), and intraclass correlation coefficient (ICC) were calculated. Results. All Sw for corneal power measurements were below 0.26 D, with ICC above 0.982. The Sw for corneal astigmatism at different areas (3, 5, and 7 mm) was below 0.21 D, with ICC above 0.913. Concerning the axis of astigmatism, its Sw was below 11.27°, with ICC above 0.975. The Sw and ICC for corneal eccentricity were 0.067 and 0.957, respectively. The Sw and ICC for high-order aberration root mean square (RMS) were 0.048 µm and 0.901, respectively. For 3rd- and 4th-order aberrometric parameters, all Sw were below 0.037 µm and all ICC were higher than 0.84, except for quadrafoil RMS (ICC: 0.689). Conclusions. The multidiagnostic device evaluated is able to provide consistent measurements of corneal power, eccentricity, and third- and fourth-order aberrations in healthy eyes.
BackgroundTo evaluate the intrasession repeatability of anterior chamber depth (ACD), central (CCT) and peripheral corneal thickness (PCT), white-to-white diameter (WTW), and irido-corneal angle (IA) measurements obtained with a multidiagnostic device in healthy eyes.MethodsA total of 107 eyes of 107 patients ranging in age from 23 to 65 years were examined with the VX120 system (Visionix-Luneau Technologies). Three consecutive measurements were obtained with this device to assess the intrasession repeatability of ACD, CCT, PCT at different nasal and temporal locations, WTW, and nasal and temporal IA. Data analysis included the calculation of within-subject standard deviation (Sw), intrasubject precision (1.96xSw), coefficient of variation (CV) and intraclass correlation coefficient (ICC).ResultsThe Sw and CV for ACD was 0.03 mm and 1.16%, respectively, with an ICC of 0.992. The Sw values for central and peripheral pachymetric measurements were below 9 μm, with CV of less than 1.6% and ICC of 0.976 or higher. For IA measurements, Sw values of 0.84 or lower were found, with a CV between 1 and 2%, and an ICC of more than 0.970. The Sw for WTW was 0.24 mm and the CV was 1.95%. No statistically significant correlations were found between any anatomical parameter evaluated and their Sw and CV values associated (−0.220 ≤ r ≤ 0.204, p ≥ 0.125).ConclusionsThe VX120 system is able to provide repeatable measurements of anatomical parameters in healthy eyes. Inter-observer repeatability should be evaluated in future studies.
PurposeTo evaluate the intrasession repeatability of refractive and ocular aberrometric measurements obtained using a new multidiagnostic device in healthy eyes.Patients and methodsA total of 107 eyes of 107 patients, age ranging from 23 to 65 years, were enrolled in this study. A complete eye examination was performed in all eyes, including an ocular examination using the VX120 system. Three consecutive measurements were obtained using this device to assess the intrasession repeatability of different refractive and ocular aber-rometric parameters. The within-subject standard deviation (Sw), intrasubject precision (1.96×Sw), and intraclass correlation coefficient (ICC) were calculated.ResultsSw and intrasubject precision for refractive data were below 0.12 and 0.20 D, respectively, in all cases. The ICC ranged from 0.947 for the J45 power vector component to 0.997 for the sphere. Concerning aberrometric measurements Sw and intrasubject precision values were below 0.05 µm and 0.10 µm, respectively. Likewise, the ICC ranged from 0.805 for the quadrafoil root mean square to 0.954 for the primary spherical aberration. Poor correlations were found between most of the refractive parameters and their Sw (–0.033≤r≤0.053, p≥0.064). Moderate and significant positive correlations were found between the magnitude of the aberrometric parameters evaluated and their Sw (r≥0.446, p<0.001).ConclusionThe new multidiagnostic device evaluated is able to provide consistent measurements of refraction and ocular aberrations in healthy eyes. Future studies should confirm if this consistency is also observed in highly aberrated eyes.
Background: The measurement of the pupillary function is an indispensable test in some eye examinations, being necessary the evaluation of the precision of instruments performing such measures. The aim of this study was to evaluate the intrasession repeatability of pupil size measurements provided by a multidiagnostic platform in a large sample of healthy eyes. Methods: This prospective study enrolled 100 healthy eyes of 100 patients, with ages ranging from 23 to 65 years old. Repeated pupil size measures under photopic (P, 220 lx), mesopic (M, 160 lx), low mesopic (L, 70 lx), and scotopic conditions (S, 1 lx) were obtained with the VX120 system (Visionix-Luneau Technologies, Chartres, France) after a complete eye exam. Likewise, pupil size was also measured once in the fellow eye in a total of 75 eyes. The level of intrasession variability as well as differences between fellow eyes were evaluated. Results: Most of differences between repeated measures did not exceed 0.5 mm (82% of S and 100% of P below this value). No significant differences between these repeated measures were found for S (p = 0.099) and L (p = 0.751). However, statistically significant differences were found between repeated measures for M (p = 0.002) and P (p = 0.003). The analysis of clinical relevance of differences between pairs (Passing-Bablok) only confirmed the clinical relevance of differences between the first and second repeated measurement of M. Concerning the comparative analysis between fellow eyes, no statistically significant differences in pupil size were found between right and left eyes in any light condition evaluated (p ≥ 0.227). Conclusions: The VX120 system can provide consistent measurements of pupil size under scotopic, low mesopic and photopic conditions, with a relative limitation under mesopic conditions.
Background:Some diseases that affect the visual system may show loss of chromatic-achromatic sensitivity before obvious physical signs appear in the usual examination of the eye's posterior segment. A perimetric study has been conducted with four typical patients with glaucoma and diabetes, at different stages of the disease.Materials and Methods:In addition to the standard white-on-white (standard automated perimetry [SAP]), a test battery has been used to study patient's contrast sensitivity, using stimuli with different chromatic, spatial, and temporal content (multichannel perimetry). The choice of stimuli tries to maximize the response of different visual mechanisms: Achromatic (parvocellular and magnocellular origin); chromatic red-green (parvocellular origin); and chromatic blue-yellow (koniocellular origin).Results:The results seem to indicate losses in the achromatic-parvocellular perimetry and both chromatic perimetry tests, undetected by conventional SAP.Conclusions:Our results illustrate that our patients without visible retinal alterations show signs of suspicion in multichannel perimetry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.