BackgroundMetaviriomes, the viral genomes present in an environment, have been studied by direct sequencing of the viral DNA or by cloning in small insert libraries. The short reads generated by both approaches make it very difficult to assemble and annotate such flexible genomic entities. Many environmental viruses belong to unknown groups or prey on uncultured and little known cellular lineages, and hence might not be present in databases.Methodology and Principal FindingsHere we have used a different approach, the cloning of viral DNA into fosmids before sequencing, to obtain natural contigs that are close to the size of a viral genome. We have studied a relatively low diversity extreme environment: saturated NaCl brines, which simplifies the analysis and interpretation of the data. Forty-two different viral genomes were retrieved, and some of these were almost complete, and could be tentatively identified as head-tail phages (Caudovirales).Conclusions and SignificanceWe found a cluster of phage genomes that most likely infect Haloquadratum walsbyi, the square archaeon and major component of the community in these hypersaline habitats. The identity of the prey could be confirmed by the presence of CRISPR spacer sequences shared by the virus and one of the available strain genomes. Other viral clusters detected appeared to prey on the Nanohaloarchaea and on the bacterium Salinibacter ruber, covering most of the diversity of microbes found in this type of environment. This approach appears then as a viable alternative to describe metaviriomes in a much more detailed and reliable way than by the more common approaches based on direct sequencing. An example of transfer of a CRISPR cluster including repeats and spacers was accidentally found supporting the dynamic nature and frequent transfer of this peculiar prokaryotic mechanism of cell protection.
We have analyzed metagenomic fosmid clones from the deep chlorophyll maximum (DCM), which, by genomic parameters, correspond to the 16S ribosomal RNA (rRNA)-defined marine Euryarchaeota group IIB (MGIIB). The fosmid collections associated with this group add up to 4 Mb and correspond to at least two species within this group. From the proposed essential genes contained in the collections, we infer that large sections of the conserved regions of the genomes of these microbes have been recovered. The genomes indicate a photoheterotrophic lifestyle, similar to that of the available genome of MGIIA (assembled from an estuarine metagenome in Puget Sound, Washington Pacific coast), with a proton-pumping rhodopsin of the same kind. Several genomic features support an aerobic metabolism with diversified substrate degradation capabilities that include xenobiotics and agar. On the other hand, these MGIIB representatives are non-motile and possess similar genome size to the MGIIA-assembled genome, but with a lower GC content. The large phylogenomic gap with other known archaea indicates that this is a new class of marine Euryarchaeota for which we suggest the name Thalassoarchaea. The analysis of recruitment from available metagenomes indicates that the representatives of group IIB described here are largely found at the DCM (ca. 50 m deep), in which they are abundant (up to 0.5% of the reads), and at the surface mostly during the winter mixing, which explains formerly described 16S rRNA distribution patterns. Their uneven representation in environmental samples that are close in space and time might indicate sporadic blooms.
We have analyzed a natural population of the marine bacterium, Alteromonas macleodii, from a single sample of seawater to evaluate the genomic diversity present. We performed full genome sequencing of four isolates and 161 metagenomic fosmid clones, all of which were assigned to A. macleodii by sequence similarity. Out of the four strain genomes, A. macleodii deep ecotype (AltDE1) represented a different genome, whereas AltDE2 and AltDE3 were identical to the previously described AltDE. Although the core genome (∼80%) had an average nucleotide identity of 98.51%, both AltDE and AltDE1 contained flexible genomic islands (fGIs), that is, genomic islands present in both genomes in the same genomic context but having different gene content. Some of the fGIs encode cell surface receptors known to be phage recognition targets, such as the O-chain of the lipopolysaccharide, whereas others have genes involved in physiological traits (e.g., nutrient transport, degradation, and metal resistance) denoting microniche specialization. The presence in metagenomic fosmids of genomic fragments differing from the sequenced strain genomes, together with the presence of new fGIs, indicates that there are at least two more A. macleodii clones present. The availability of three or more sequences overlapping the same genomic region also allowed us to estimate the frequency and distribution of recombination events among these different clones, indicating that these clustered near the genomic islands. The results indicate that this natural A. macleodii population has multiple clones with a potential for different phage susceptibility and exploitation of resources, within a seemingly unstructured habitat.
The identification of relevant virus-host pairs that globally account for a large pool of carbon and nutrients in the ocean is paramount to build accurate ecological models. A previous work using single-virus genomics led to the discovery of the uncultured single-virus vSAG 37-F6, originally sorted from the Mediterranean Sea (Blanes Bay Microbial Observatory), that represents one of the most abundant dsDNA viral population in the marine surface virosphere. Here, from same sampling site, we report that a Pelagibacter single-cell contained a viral member of vSAG 37-F6 population, by means of PCR screening of sorted, genome-amplified single cells with vSAG 37-F6-specific primers and whole-genome sequencing. Furthermore, viruses from this population were also found in three other Pelagibacter single cells from the South Pacific and Atlantic oceans. These new uncultured pelagiphages were genetically different from the previously characterized pelagiphage isolates. Data showed that the uncultured vSAG 37-F6 population represents the Pelagibacter phages that inhabit the sunlit ocean better, and contains a vast unrecognized microdiversity.
Cellular metagenomes are primarily used for investigating microbial community structure and function. However, cloned fosmids from such metagenomes capture phage genome fragments that can be used as a source of phage genomes. We show that fosmid cloning from cellular metagenomes and sequencing at a high coverage is a credible alternative to constructing metaviriomes and allows capturing and assembling novel, complete phage genomes. It is likely that phages recovered from cellular metagenomes are those replicating within cells during sample collection and represent "active" phages, naturally amplifying their genomic DNA and increasing chances for cloning. We describe five sets of siphoviral contigs (MEDS1, MEDS2, MEDS3, MEDS4, and MEDS5), obtained by sequencing fosmids from the cellular metagenome of the deep chlorophyll maximum in the Mediterranean. Three of these represent complete siphoviral genomes and two represent partial ones. This is the first set of phage genomes assembled directly from cellular metagenomic fosmid libraries. They exhibit low sequence similarities to one another and to known siphoviruses but are remarkably similar in overall genome architecture. We present evidence suggesting they infect picocyanobacteria, likely Synechococcus. Four of these sets also define a novel branch in the phylogenetic tree of phage large subunit terminases. Moreover, some of these siphoviral groups are globally distributed and abundant in the oceans, comparable to some known myoviruses and podoviruses. This suggests that, as more siphoviral genomes become available, we will be better able to assess the abundance and influence of this diverse and polyphyletic group in the marine habitat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.