The mechanisms responsible for low mitochondrial respiratory chain (MRC) activity in the liver of patients with nonalcoholic steatohepatitis are unknown. In this study, we examined the cause of this dysfunction in ob/ob mice.
The epithelial-to-mesenchymal transition (EMT) is a biological process in which a non-motile epithelial cell changes to a mesenchymal state with invasive capacities. However, the EMT program is involved in both physiological and pathological processes. Cancer-associated EMT is known to contribute to increase invasiveness and metastasis, resistance to therapies, and generation of cell populations with stem cell-like characteristics and therefore is deeply involved in tumor progression. This process is finely orchestrated by multiple signaling pathways and regulatory transcriptional networks. The hallmark of EMT is the loss of epithelial surface markers, mainly E-cadherin, and the acquisition of mesenchymal phenotype. These events can be mediated by EMT transcription factors which can cooperate with several enzymes to repress the E-cadherin expression and regulate EMT at the epigenetic and post-translational level. A growing body of evidence indicates that cancer cells can reside in various phenotypic states along the EMT spectrum, where cells can jointly retain epithelial traits with mesenchymal ones. This type of phenotypic plasticity endows cancer cells with tumor-initiating potential. The identification of the signaling pathways and modulators that lead to activation of EMT programs during these disease processes is providing new insights into the plasticity of cellular phenotypes and possible therapeutic interventions.
Insulin resistance is present in almost all patients with nonalcoholic steatohepatitis (NAFLD), and mitochondrial dysfunction likely plays a critical role in the progression of fatty liver into nonalcoholic steatohepatitis. Rosiglitazone, a selective ligand of peroxisome proliferator-activated receptor gamma (PPAR␥), is an insulin sensitizer drug that has been used in a number of insulin-resistant conditions, including NAFLD. The aim of this study was to analyze the effects of rosiglitazone on the liver histology and mitochondrial function in a model of NAFLD. All studies were carried out in wild-type and leptin-deficient (ob/ob) C57BL/6J mice. Ob/ob mice were treated with 1 mg/kg/day, and activity of mitochondrial respiratory chain (MRC), beta-oxidation, lipid peroxidation, glutathione content in mitochondria, and 3-tyrosine-nitrated proteins in mitochondria were measured. In addition, histological and ultrastructural changes induced by rosiglitazone were also noted. Rosiglitazone treatment increased liver steatosis, particularly microvesicular steatosis. In these animals, mitochondria were markedly swollen with cristae peripherally placed. In ob/ob mice, this drug increased PPAR␥ protein expression and lipid peroxide content in liver tissue and decreased glutathione concentration in mitochondria. Rosiglitazone suppressed the activity of complex I of the MRC in ob/ob mice, but did not affect beta-oxidation. 3-Tyrosine nitrated mitochondrial proteins, significantly increased in ob/ob mice, were not modified by rosiglitazone treatment. Conclusion: Treatment of ob/ob mice with rosiglitazone did not reverse histological lesions of NAFLD or improve MRC activity. On the contrary, rosiglitazone reduced activity of complex I and increased oxidative stress and liver steatosis.
Activity of the oxidative phosphorylation system (OXPHOS) is decreased in humans and mice with nonalcoholic steatohepatitis. Nitro-oxidative stress seems to be involved in its pathogenesis. The aim of this study was to determine whether fatty acids are implicated in the pathogenesis of this mitochondrial defect. In HepG2 cells, we analyzed the effect of saturated (palmitic and stearic acids) and monounsaturated (oleic acid) fatty acids on: OXPHOS activity; levels of protein expression of OXPHOS complexes and their subunits; gene expression and half-life of OXPHOS complexes; nitro-oxidative stress; and NADPH oxidase gene expression and activity. We also studied the effects of inhibiting or silencing NADPH oxidase on the palmitic-acid-induced nitro-oxidative stress and subsequent OXPHOS inhibition. Exposure of cultured HepG2 cells to saturated fatty acids resulted in a significant decrease in the OXPHOS activity. This effect was prevented in the presence of a mimic of manganese superoxide dismutase. Palmitic acid reduced the amount of both fully-assembled OXPHOS complexes and of complex subunits. This reduction was due mainly to an accelerated degradation of these subunits, which was associated with a 3-tyrosine nitration of mitochondrial proteins. Pretreatment of cells with uric acid, an antiperoxynitrite agent, prevented protein degradation induced by palmitic acid. A reduced gene expression also contributed to decrease mitochondrial DNA (mtDNA)-encoded subunits. Saturated fatty acids induced oxidative stress and caused mtDNA oxidative damage. This effect was prevented by inhibiting NADPH oxidase. These acids activated NADPH oxidase gene expression and increased NADPH oxidase activity. Silencing this oxidase abrogated totally the inhibitory effect of palmitic acid on OXPHOS complex activity. We conclude that saturated fatty acids caused nitro-oxidative stress, reduced OXPHOS complex half-life and activity, and decreased gene expression of mtDNA-encoded subunits. These effects were mediated by activation of NADPH oxidase. That is, these acids reproduced mitochondrial dysfunction found in humans and animals with nonalcoholic steatohepatitis.
Nonalcoholic fatty liver disease (NAFLD) is the most frequent histological finding in individuals with abnormal liver-function tests in the Western countries. In previous studies, we have shown that oxidative phosphorylation (OXPHOS) is decreased in individuals with NAFLD, but the cause of this mitochondrial dysfunction remains uncertain. The aims of this study were to determine whether feeding mice a high-fat diet (HFD) induces any change in the activity of OXPHOS, and to investigate the mechanisms involved in the pathogenesis of this defect. To that end, 30 mice were distributed between five groups: control mice fed a standard diet, and mice on a HFD and treated with saline solution, melatonin (an antioxidant), MnTBAP (a superoxide dismutase analog) or uric acid (a scavenger of peroxynitrite) for 28 weeks intraperitoneously. In the liver of these mice, we studied histology, activity and assembly of OXPHOS complexes, levels of subunits of these complexes, gene expression of these subunits, oxidative and nitrosative stress, and oxidative DNA damage. In HFD-fed mice, we found nonalcoholic steatohepatitis, increased gene expression of TNFα, IFNγ, MCP-1, caspase-3, TGFβ1 and collagen α1(I), and increased levels of 3-tyrosine nitrated proteins. The activity and assembly of all OXPHOS complexes was decreased to about 50–60%. The amount of all studied OXPHOS subunits was markedly decreased, particularly the mitochondrial-DNA-encoded subunits. Gene expression of mitochondrial-DNA-encoded subunits was decreased to about 60% of control. There was oxidative damage to mitochondrial DNA but not to genomic DNA. Treatment of HFD-fed mice with melatonin, MnTBAP or uric acid prevented all changes observed in untreated HFD-fed mice. We conclude that a HFD decreased OXPHOS enzymatic activity owing to a decreased amount of fully assembled complexes caused by a reduced synthesis of their subunits. Antioxidants and antiperoxynitrites prevented all of these changes, suggesting that nitro-oxidative stress played a key role in the pathogenesis of these alterations. Treatment with these agents might prevent the development of NAFLD in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.