Several dinuclear terphenyl phosphine copper(I) halide complexes of composition [CuX(PR2Ar′)]2 (X = Cl, Br, I; R = hydrocarbyl, Ar′ = 2,6-diarylterphenyl radical), 1–5, have been isolated from the reaction of CuX with 1 equiv of the phosphine ligand. Most of them have been characterized by X-ray diffraction studies in the solid state, thus allowing comparative discussions of different structural parameters, namely, Cu···Cu and Cu···Aryl separations, conformations adopted by coordinated phosphines, and planarity of the Cu2X2 cores. Centrosymmetric complexes [CuI(PMe2ArXyl2)]2, 1c, and [CuI(PEt2ArMes2)]2, 3c, despite their similar structures, show very distinct photoluminescence (PL) in powder form at room temperature. The photophysical behavior of these compounds in liquid solution, solid–solid Zeonex solution and powder samples at room temperature and 77 K have been investigated and supported by DFT calculation. Identification of vibronic coupling modes, done by group theory calculations and the technique of projection operators, shows that the manifestation of these modes is conditioned by crystal packing. Complexes [CuI(PMe2ArXyl2)]2, 1c, and [CuI(PEt2ArMes2)]2, 3c, display remarkable activity in copper-catalyzed azide–alkyne cycloaddition reactions involving preformed and in situ-made azides. Reactions are performed in H2O, under aerobic conditions, with low catalyst loadings and tolerate the use of iodoalkynes as substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.