Wild relatives of domesticated crop species harbor multiple, diverse, disease resistance (R) genes that could be used to engineer sustainable disease control. However, breeding R genes into crop lines often requires long breeding timelines of 5-15 years to break linkage between R genes and deleterious alleles (linkage drag). Further, when R genes are bred one at a time into crop lines, the protection that they confer is often overcome within a few seasons by pathogen evolution. If several cloned R genes were available, it would be possible to pyramid R genes in a crop, which might provide more durable resistance. We describe a three-step method (MutRenSeq)-that combines chemical mutagenesis with exome capture and sequencing for rapid R gene cloning. We applied MutRenSeq to clone stem rust resistance genes Sr22 and Sr45 from hexaploid bread wheat. MutRenSeq can be applied to other commercially relevant crops and their relatives, including, for example, pea, bean, barley, oat, rye, rice and maize.
Sequence assembly of large and repeat-rich plant genomes has been challenging, requiring substantial computational resources and often several complementary sequence assembly and genome mapping approaches. The recent development of fast and accurate long-read sequencing by circular consensus sequencing (CCS) on the PacBio platform may greatly increase the scope of plant pan-genome projects. Here, we compare current long-read sequencing platforms regarding their ability to rapidly generate contiguous sequence assemblies in pan-genome studies of barley (Hordeum vulgare). Most long-read assemblies are clearly superior to the current barley reference sequence based on short-reads. Assemblies derived from accurate long reads excel in most metrics, but the CCS approach was the most cost-effective strategy for assembling tens of barley genomes. A downsampling analysis indicated that 20-fold CCS coverage can yield very good sequence assemblies, while even 5-fold CCS data may capture the complete sequence of most genes. We present an updated reference genome assembly for barley with near-complete representation of the repeat-rich intergenic space. Long-read assembly can underpin the construction of accurate and complete sequences of multiple genomes of a species to build pan-genome infrastructures in Triticeae crops and their wild relatives.
The composition of the two major lipidic organelles of the tapetum of Brassica napus L. has been determined. Elaioplasts contained numerous small (0.2-0.6 micron) lipid bodies that were largely made up of sterol esters and triacylglycerols, with monogalactosyldiacylglycerol as the major polar lipid. This is the first report in any species of the presence of non-cytosolic, sterol ester-rich, lipid bodies. The elaioplast lipid bodies also contained 34- and 36-kDa proteins which were shown by N-terminal sequencing to be homologous to fibrillin and other plastid lipid-associated proteins. Tapetosomes contained mainly polyunsaturated triacylglycerols and associated phospholipids plus a diverse class of oleosin-like proteins. The pollen coat, which is derived from tapetosomes and elaioplasts, was largely made up of sterol esters and the C-terminal domains of the oleosin-like proteins, but contained virtually no galactolipids, triacylglycerols or plastid lipid-associated proteins. The sterol compositions of the elaioplast and pollen coat were almost identical, consisting of stigmasterol > campestdienol > campesterol > sitosterol >> cholesterol, which is consistent with the majority of the pollen coat lipids being derived from elaioplasts. These data demonstrate that there is substantial remodelling of both the lipid and protein components of elaioplasts and tapetosomes following their release into the anther locule from lysed tapetal cells, and that components of both organelles contribute to the formation of the lipidic coating of mature pollen grains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.