Coastal wetlands are dynamic ecosystems that exist at the interface between land and sea. They represent environments with a great diversity of habitats and communities, high carbon sequestration capacity and a wide range of ecosystem services. In the Mediterranean, the largest coastal wetlands are found in deltaic areas like that of the Ebro River (Spain), which has a coastline length of approximately 50 km, occupying a total area of 325 km2. The Ebro Delta is included in different national and international frameworks for environmental conservation, despite which there are several risks that threaten it. The lack of sedimentary contributions due to the regulation of the Ebro riverbed (irrigation, reservoirs, and hydroelectric power generation) has caused erosion and the retreat of certain sections of its coastline. To this situation of sediment deficit must be added the threat posed by the effects of global change, such as the rise in sea level, the increase in temperature and in the frequency and intensity of storms. This study analyses the particularities of the coastal wetland of the Ebro Delta, identifying the main threats it faces, as well as possible adaptation and mitigation strategies to these changes.
The Hiendelaencina district in Spain was the most important silver producer in Europe during 1844–1925. At the end of the 20th century, with mines having closed, some waste rock dumps were reprocessed, and the sludge from the flotation process was stored in two tailings ponds. When this activity ceased, the residues began to be eroded and disperse. In this study, the state of degradation of both deposits was evaluated using historical mapping and light detection and ranging (LiDAR) data, incorporated into a Geographic Information System. In the aerial images (1946–2018), mine tailings and their main erosive and sedimentary forms were mapped. Geoforms linked to hydrological (channels, gullies, alluvial cones), wind (eolian mantles), hydric–gravitational (colluvium) and anthropic (motorbike tracks) processes which move sludge into the surrounding areas were identified. A net loss of 8849 m3 of sludge, a release of 10.3 t of potentially polluting substances and a high erosion rate of 346 t/ha*year were calculated based on LiDAR data from 2009 and 2014. The ponds show a current high degree of erosion that could increase due to both human activity and the growing frequency of drought and torrential rain periods if stabilization measures are not undertaken.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.