Silver nanoparticles (AgNPs) are novel compounds used as antimicrobial and antiviral agents. In addition, AgNPs have been used to improve the growth of different plants, as well as the in vitro multiplication of plant material. In this work the effect of AgNPs on in vitro growth of ‘Canino’ and ‘Mirlo Rojo’ cultivars, as well as the leaf ion composition, are studied. Different concentrations of AgNPs (0, 25, 50, 75 and 100 mg L−1) were added to two culture systems: semisolid medium with agar (SSM) in jars and liquid medium in temporary immersion system (TIS). Proliferation (number of shoots), shoot length, productivity (number of shoot × average length), leaf surface, fresh and dry weight were measured. Additionally, the silver and other ion accumulation in the leaves were evaluated by inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis. The productivity of ‘Canino’ and ‘Mirlo Rojo’ decreased when increasing the concentration of AgNPs in the semisolid medium. However, the use of AgNPs in the TIS improved the proliferation and productivity of ‘Canino’ and Mirlo Rojo’, increasing biomass production, and the concentration of nutrients in the plants, although these effects are genotype-dependent. TISs are the best system for introducing silver into shoots, the optimum concentration being 50 mg L−1 for ‘Canino’ and 75 mg L−1 for ‘Mirlo Rojo’. Principal component analysis, considering all the analyzed ions along the treatments, separates samples in two clear groups related to the culture system used. The use of bioreactors with a liquid medium has improved the productivity of ‘Canino’ and ‘Mirlo Rojo’ in the proliferation stage, avoiding hyperhydration and other disorders. The amount of metallic silver that penetrates apricot plant tissues depends on the culture system, cultivar and concentration of AgNPs added to the culture medium. Silver ion accumulation measured in the shoots grown in the TIS was higher than in shoots micropropagated in a semisolid medium, where it is barely detectable. Furthermore, AgNPs had a beneficial effect on plants grown in TIS. However, AgNPs had a detrimental effect when added to a semisolid medium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.