Two phospholipases A2 (PLA2s), designated as RV-4 and RV-7 were purified from venom of the Taiwan Russell's viper ( V$era russelli fnrmnsensis) by gel-filtration and reverse-phase HPLC. Their primary structures were solved by both protein sequencing and cDNA cloning and sequencing. The cDNA synthesized was amplified by the polymerase-chain reaction using a pair of synthetic oligonucleotide primers corresponding to the N-and the C-terminal flanking regions of the enzymes.The deduced amino acid sequences of RV-4 and RV-7 were 92% identical to those of the vipoxin and vipoxin inhibitor, respectively, from the Bulgarian Vipera a. ammodytes. RV-4 itself was neurotoxic, whereas RV-7 had much lower enzymatic activity and was not toxic. The low enzymatic activity of RV-7 may be attributed to five acidic residues at positions 7, 17, 59, 114 and 119, which presumably impair its binding to aggregated lipid substrates. Based on the sequence comparison among all the known group I1 PLA2s, residues 6, 12, 76-81, and 119-125 were identified as important for the neurotoxicity. RV-4 and RV-7 exist in the crude venom as heterodimers, which were again formed by mixing together the HPLC-purified RV-4 and RV-7. Moreover, RV-7 inhibited the enzymatic activity of RV-4 in vitro but potentiated its lethal potency and neurotoxicity. It is suggested that RV-7 may facilitate the specific binding of RV-4 to its presynaptic binding sites, probably by preventing its non-specific adsorption.The extracellular phospholipases A2 (PI,A2) constitute a large family of homologous 14-kDa proteins which are major components of snake venoms [l -31. The venom PLA2s, in the presence of Ca2+, catalyze the hydrolysis of the 2-acyl ester bond of 1,2-diacyl-sn-3-phosphoglycerol lipids of the biological membranes or aggregated phospholipid. Many of the enzymes have been shown to possess different pharmacological actions : neurotoxic [4 ~ 61, cardiotoxic, hemolytic, myonccrotic, anticoagulant [7], convulsant, hypotensive [8, 91 or edema-inducing action [lo]. From a structural-biology perspective, such a functional diversity within this group of structurally similar proteins raises questions of the relationship between their structure and their effect; for example. one may wonder what structural features are responsible for the choice between lipid interface and specific acceptor protein as the first target [5, 11 -131 or for the capability of forming a complex with another PLA2 leading to an increase of toxicity The neurotoxic PLA2s may be used as probes to study neurotransmitter release, the role of membrane phospholipids in synaptic transmission, or irreversible neural damage [4, 51. [4,141.
Phospholipases A2 (PLA2s) were purified from the Trimeresurus stejnegeri venom obtained from various localities in Taiwan and three provinces in China, by gel filtration followed by reversed-phase HPLC. The precise molecular mass and N-terminal sequence of each PLA2 were determined. In addition to the six previously documented PLA2 isoforms of this species, we identified ten novel isoforms. The venom gland cDNAs of individual specimens of the viper from four localities were used for PCR and subsequent cloning of the PLA2s. The molecular masses and partial sequences of most of the purified PLA2s matched with those deduced from a total of 13 distinct cDNA sequences of these clones. Besides the commonly known Asp49 or Lys-49 PLA2s of crotalid venoms, a novel type of PLA2 with Asn-49 substitution at the Ca2+-binding site was discovered. This type of PLA2 is non-catalytic, but may cause local oedema and appears to be a venom marker of many tree vipers. In particular, we showed that T. stejnegeri displayed high geographic variations of the PLA2s within and between their Taiwanese and Chinese populations, which can be explained by geological isolation and prey ecology. A phylogenetic tree of the acidic venom PLA2s of this species and other related Asian vipers reveals that T. stejnegeri contains venom genes related to those from several sympatric pit vipers, including the genera Tropedolaemus and Gloydius besides the Trimeresurus itself. Taken together, these findings may explain the exceptionally high variations in the venom as well as the evolutionary advantage of this species.
The major coagulating fibrinogenase of Deinagkistrdon acutus venom, designated acutobin, was purified by anion-exchange chromatography, gel filtration and reverse-phase HPLC. Approximately 80% of its protein sequence was determined by sequencing the various fragments derived from CNBr cleavage and digestion with endoprotease. Extensive screening of the venom gland cDNA species after amplification by PCR resulted in the isolation of four distinct cDNA clones encoding acutobin and three other serine proteases, designated Dav-PA, Dav-KN and Dav-X. The complete amino acid sequences of these enzymes were deduced from the cDNA sequences. The amino-acid sequence of acutobin contains a single chain of 236 residues including four potential N-glycosylation sites. The purified acutobin (40 kDa) contains approx. 30% carbohydrate by weight, which could be partly removed by N-glycanase. The phylogenetic tree of the complete amino acid sequences of 40 serine proteases from 18 species of Crotalinae shows functional clusters reflecting parallel evolution of the three major venom enzyme subtypes: coagulating enzymes, kininogenases and plasminogen activators. The possible structural elements responsible for the functional specificity of each subtype are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.