Of all tissue heating techniques, RF-based technologies appear to be the most established and clinically proven. The design and specifications of the described vacuumassisted bipolar RF device fall within the range of the specifications currently prescribed for esthetic, nonablative RF systems.
The large, catalytic subunits (LSUs; ilvB, ilvG and ilvI, respectively) of enterobacterial acetohydroxyacid synthases isozymes (AHAS I, II and III) have molecular weights approximately 60 kDa and are paralogous with a family of other thiamin diphosphate dependent enzymes. The small, regulatory subunits (SSUs) of AHAS I and AHAS III (ilvN and ilvH) are required for valine inhibition, but ilvN and ilvH can only confer valine sensitivity on their own LSUs. AHAS II is valine resistant. The LSUs have only approximately 15, <<1 and approximately 3%, respectively, of the activity of their respective holoenzymes, but the holoenzymes can be reconstituted with complete recovery of activity. We have examined the activation of each of the LSUs by SSUs from different isozymes and ask to what extent such activation is specific; that is, is effective nonspecific interaction possible between LSUs and SSUs of different isozymes? To our surprise, the AHAS II SSU ilvM is able to activate the LSUs of all three of the isozymes, and the truncated AHAS III SSUs ilvH-Delta80, ilvH-Delta86 and ilvH-Delta89 are able to activate the LSUs of both AHAS I and AHAS III. However, none of the heterologously activated enzymes have any feedback sensitivity. Our results imply the existence of a common region in all three LSUs to which regulatory subunits may bind, as well as a similarity between the surfaces of ilvM and the other SSUs. This surface must be included within the N-terminal betaalphabetabetaalphabeta-domain of the SSUs, probably on the helical face of this domain. We suggest hypotheses for the mechanism of valine inhibition, and reject one involving induced dissociation of subunits.
Due to its wide spectrum of parameters, the SVC technology can promote different biological responses. Owing to the "Switching" technology, the control of energy depth penetration enables delivery of the necessary thermal dose to the targeted skin layer. In addition, this novel technology includes the "Vacuum" and "Cooling" mechanisms, each contributing to the safety of the treatment. The Smart Heat function reduces the necessary energy levels and thereby reduces the pain level and risks for side effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.