<p><span><span>&#1055;&#1086;&#1078;&#1072;&#1083;&#1091;&#1081;&#1089;&#1090;&#1072;, &#1074;&#1089;&#1090;&#1072;&#1074;&#1100;&#1090;&#1077; &#1089;&#1074;&#1086;&#1081; &#1072;&#1073;&#1089;&#1090;&#1088;&#1072;&#1082;&#1090;&#1085;&#1099;&#1081; HTHigh anthropogenic impact and the rate of urbanization result in a decrease of urban soils&#8217; capacity to perform ecosystem services. Carbon sequestration is an important soil-based ecosystem service, which can be assessed through quantity and quality soil carbon stocks. The stability of soil organic matter (SOM) is characterized by the resistance of its constituent components to biological, chemical and physical destruction. In the study, SOME stability in peat-sand mixture used for urban soils&#8217; construction; floodplain soil was analyzed in response to temperature-moisture conditions. The decomposition rate of various soils was assessed. Decomposition was assessed through studying microbial production of CO2. In the research the CO2 emissions were studied under following temperatures and moisture conditions: temperature &#8211; 7&#176;C, 22&#176;C, 30&#176;C and 40&#176;C and moisture &#8211; 0.2 WHC, 0.4 WHC, 0.6 WHC, 0.8 WHC, 1 WHC. Moisture affects the amount and activity of microbial biomass, controls the availability of oxygen to microorganisms, causes periods of water microbial stress and also can destabilize organic matter, resulting in increased availability of carbon to soil microorganisms. Different patterns of moisture and temperature impacts on the soil organic carbon (SOC) decomposition rates were observed. It was concluded that, depending on the qualitative composition of carbon, the impact of hydrothermal conditions on the emission of carbon dioxide changed.ML &#1079;&#1076;&#1077;&#1089;&#1100;.</span></span></p>
<p>Moscow is the largest megapolis in Europe. The area of sealed areas in the center of Moscow is more than 50% (without hydrological objects). Anti-icing mixtures, car traffic, aerosols, dust, trampling - all this leads to the maximum stress of ecosystems in an urban environment Soil emission is the largest component of Gross Respiration in terrestrial ecosystems, including cities. Field measurements of emission allow estimating and comparing the state of both the underground tier and the entire ecosystem in different functional zones of a city with different types of vegetation. Soil emission is the easiest to measure, as compared to other fluxes of &#1057;-exchange. In 2019, field measurements of carbon dioxide emissions were carried out at 15 key sites (15 times, 1 per 2 weeks), which showed that in the historic center, not only the temperature at different depths of the soil, soil moisture, carbon content, particle size distribution, but also the diversity of factors combined into a group of "land use", namely: human tillage, irrigation, lawn mowing, garbage removal, sprinkling peat-compost mixture, trampling, bringing anti-icing reagents, etc., have a contrasting effect on carbon dioxide emissions from urban soils. In some cases, the emission is below the conditional background values (urban forest), in other cases, it is higher up to several times, which allows a new assessment of soils of unsealed (open) areas of the center of a megapolis as an important component of the (micro-) regional C-cycle. The data obtained allow comparing the current state of the upper part of the underground tier of urban ecosystems under the maximum anthropogenic load in the territory of a modern large city, where the share of open surfaces is minimal. The territories, where the ground layer is represented by cultivated lawn, are characterized by the maximum values of soil carbon dioxide emission.</p> <p><em>T</em><em>he study was supported by the Russian Research Foundation #19-77-30012 (field measurements in the periphery of Moscow) and the Russian Foundation for Basic Research #18-35-20052 (field measurements in the historic center of Moscow).</em></p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.