An unusual supernumerary chromosome has been reported for two related avian species, the zebra and Bengalese finches. This large, germline-restricted chromosome (GRC) is eliminated from somatic cells and spermatids and transmitted via oocytes only. Its origin, distribution among avian lineages, and function were mostly unknown so far. Using immunolocalization of key meiotic proteins, we found that GRCs of varying size and genetic content are present in all 16 songbird species investigated and absent from germline genomes of all eight examined bird species from other avian orders. Results of fluorescent in situ hybridization of microdissected GRC probes and their sequencing indicate that GRCs show little homology between songbird species and contain a variety of repetitive elements and unique sequences with paralogs in the somatic genome. Our data suggest that the GRC evolved in the common ancestor of all songbirds and underwent significant changes in the extant descendant lineages.
In two experimental series of transplantation of embryonic cell nuclei into nonenucleated unfertilized eggs in medaka (Oryzias latipes), fertile and diploid nuclear transplants were successfully generated. In the first experiment, nuclei from blastula cells of a medaka stock with the wild-type body color were transplanted into 1722 eggs from the orange-red variety. Of 26 adult nuclear transplants with the wild-type body color, 22 were, as expected, triploid and sterile, but the other four were fertile. Three of the four were diploid, and the last one was tetraploid. They transmitted the wild-type body color to the F1 and F2 progenies in a Mendelian fashion. In the second experiment, cell nuclei from four-somite-stage embryos of the orangered variety carrying the green fluorescent protein (GFP) transgene were transplanted into 1688 recipients of the same strain. Three adult nuclear transplants expressing GFP were obtained. Two of them were triploid and sterile, but the remaining one was fertile and diploid. The transgene of the donor nuclei was transmitted to the F(1) and F(2) offspring in a Mendelian fashion. These observations that diploid and fertile nuclear transplants could be obtained without enucleation of the recipient eggs may have important implications for future nuclear transplantation in medaka.
Ring chromosomes (RCs) are circular DNA molecules, which occur rarely in eukaryotic nuclear genomes. Lilian Vaughan Morgan first described them in the fruit fly. Human embryos very seldom have RCs, about 1:50,000. Carriers of RCs may have varying degrees of symptoms, from healthy phenotype to serious pathologies in physical and intellectual development. Many authors describe common symptoms of RC presence: short stature and some developmental delay that could be described as a "ring chromosome syndrome." As a rule, RCs arise de novo through the end-joining of two DNA double-strand breaks, telomere-subtelomere junction, or inv dup del rearrangement in both meiosis and mitosis. There are family cases of RC inheritance. The presence of RCs causes numerous secondary chromosome rearrangements in vivo and in vitro. RCs can change their size, become lost, or increase their copy number and cause additional deletions, duplication, and translocations, affecting both RCs and other chromosomes. In this review, we examine RC inheritance, instability, mechanisms of formation, and potential clinical applications of artificially created RCs for large-scale chromosome rearrangement treatment.
BackgroundRecently fibroblasts of many mammalian species have been reprogrammed to pluripotent state using overexpression of several transcription factors. This technology allows production of induced pluripotent stem (iPS) cells with properties similar to embryonic stem (ES) cells. The completeness of reprogramming process is well studied in such species as mouse and human but there is not enough data on other species. We produced American mink (Neovison vison) ES and iPS cells and compared these cells using transcriptome analysis.ResultsWe report the generation of 10 mink ES and 22 iPS cell lines. The majority of the analyzed cell lines had normal diploid chromosome number. The only ES cell line with XX chromosome set had both X-chromosomes in active state that is characteristic of pluripotent cells. The pluripotency of ES and iPS cell lines was confirmed by formation of teratomas with cell types representing all three germ layers. Transcriptome analysis of mink embryonic fibroblasts (EF), two ES and two iPS cell lines allowed us to identify 11831 assembled contigs which were annotated. These led to a number of 6891 unique genes. Of these 3201 were differentially expressed between mink EF and ES cells. We analyzed expression levels of these genes in iPS cell lines. This allowed us to show that 80% of genes were correctly reprogrammed in iPS cells, whereas approximately 6% had an intermediate expression pattern, about 7% were not reprogrammed and about 5% had a "novel" expression pattern. We observed expression of pluripotency marker genes such as Oct4, Sox2 and Rex1 in ES and iPS cell lines with notable exception of Nanog.ConclusionsWe had produced and characterized American mink ES and iPS cells. These cells were pluripotent by a number of criteria and iPS cells exhibited effective reprogramming. Interestingly, we had showed lack of Nanog expression and consider it as a species-specific feature.
To develop nuclear transplantation techniques for the medaka Oryzias latipes, nuclei of cultured cells from transgenic fish were transplanted into unfertilized eggs of the orange-red variety of O. latipes, without enucleation, in two experimental series. In the first experimental series, fibroblast cells cultured from the adult caudal fin were used as donors, which carried the green fluorescent protein (GFP) gene driven by the promoter of the medaka elongation factor 1alpha-A gene. Wild-type body color was another donor genetic marker used in this experimental series. In the second experimental series, cells cultured from 6-day-old embryos were used as donors, which carried the GFP genetic marker driven by the promoter of the medaka beta-actin gene. From more than 1000 eggs transplanted in each experiment, a considerable number of nuclear transplants developed to various embryonic stages showing stage- and tissue-specific expression of the donor genetic markers, although the expression was mosaic in many cases. Three and six of the transplanted eggs in the first and second experimental series (0.3 and 0.5%, respectively) hatched, and the hatchlings expressing the genetic markers survived for up to 3 weeks. The chromosome number varied among cells in a single transplant embryo. The results obtained in these experiments may help future cloning efforts in fish.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.