The SR proteins are a family of pre-mRNA splicing factors with additional roles in gene regulation. To investigate individual family members in vivo, we generated a comprehensive panel of stable cell lines expressing GFP-tagged SR proteins under endogenous promoter control. Recruitment of SR proteins to nascent FOS RNA was transcription dependent and RNase sensitive, with unique patterns of accumulation along the gene specified by the RNA recognition motifs (RRMs). In addition, all SR protein interactions with Pol II were RNA dependent, indicating that SR proteins are not preassembled with Pol II. SR protein interactions with RNA were confirmed in situ by FRET/FLIM. Interestingly, SC35-GFP also exhibited FRET with DNA and failed to associate with cytoplasmic mRNAs, whereas all other SR proteins underwent nucleocytoplasmic shuttling and associated with specific nuclear and cytoplasmic mRNAs. Because different constellations of SR proteins bound nascent, nuclear, and cytoplasmic mRNAs, mRNP remodeling must occur throughout an mRNA's lifetime.
We recently characterized human hnRNP L as a global regulator of alternative splicing, binding to CArepeat and CA-rich elements. Here we report that hnRNP L autoregulates its own expression on the level of alternative splicing. Intron 6 of the human hnRNP L gene contains a short exon that, if used, introduces a premature termination codon, resulting in nonsense-mediated decay (NMD). This "poison exon" is preceded by a highly conserved CA-rich cluster extending over 800 nucleotides that binds hnRNP L and functions as an unusually extended, intronic enhancer, promoting inclusion of the poison exon. As a result, excess hnRNP L activates NMD of its own mRNA, thereby creating a negative autoregulatory feedback loop and contributing to homeostasis of hnRNP L levels. We present experimental evidence for this mechanism, based on NMD inactivation, hnRNP L binding assays, and hnRNP L-dependent alternative splicing of heterologous constructs. In addition, we demonstrate that hnRNP L cross-regulates inclusion of an analogous poison exon in the hnRNP L-like pre-mRNA, which explains the reciprocal expression of the two closely related hnRNP L proteins.Alternative splicing regulation provides a major mechanism for increasing diversity of gene expression and mediating tissue and developmental control in higher eukaryotes. For many years, studies have focused on mechanisms and factors for a few model genes, but more recently genome-wide approaches have yielded additional insight into the complexity of alternative splicing regulation. Currently, genomewide models attempt to describe networks of relatively few global splicing regulators that act on many target genes in a combinatorial manner. It is often more than a single factor that determines a specific alternative splicing process. These splicing-regulatory networks can be viewed as one of several layers of gene regulation, embedded in other networks such as those of transcription, miRNA-mediated regulation, nonsense-mediated decay (NMD), polyadenylation, translation, or cellular localization (1-3, 6, 21, 25, 34, 36). Most splicing regulators characterized thus far belong to either one of two groups, the family of serine-arginine-rich (SR) proteins and the heterogeneous nuclear ribonucleoproteins (hnRNPs).We have focused for the last few years on hnRNP L, an abundant nuclear, multifunctional RNA-binding protein with four RNA-recognition motifs (29) that plays both nuclear and cytoplasmic roles in mRNA export of intronless genes (9, 18), IRES-mediated translation (10), mRNA stability (11, 14, 33), and splicing (see below). We have recently characterized in more detail its RNA-binding specificity and function as a global alternative splicing regulator (13, 16). Initial evidence for hnRNP L's splicing-regulatory role came from a single human gene, coding for endothelial nitric oxide synthase, which contains in its intron 13 a polymorphic CA repeat region where hnRNP L binds and acts as a splice activator (15). Based on a SELEX-derived consensus for hnRNP L RNA binding, CA-repeat,...
Moderate concentrations of reactive oxygen species (ROS) serve as coregulatory signaling molecules, whereas exceedingly high concentrations trigger cell death. Here, we identify ROS-induced acetylation of the proapoptotic kinase HIPK2 as a molecular mechanism that controls the threshold discerning sensitivity from resistance toward ROS-mediated cell death. SUMOylation of HIPK2 at permissive ROS concentrations allows the constitutive association of HDAC3 and keeps HIPK2 in the nonacetylated state. Elevated ROS concentrations prevent SUMOylation of HIPK2 and, consequently, reduce association of HDAC3, thus leading to the acetylation of HIPK2. Reconstitution experiments showed that HIPK2-dependent genes cause decreased ROS levels. Although a nonacetylatable HIPK2 mutant enhanced ROS-induced cell death, an acetylation-mimicking variant ensured cell survival even under conditions of high oxidative stress.
Recent genomic data indicate that RNA polymerase II (Pol II) function extends beyond conventional transcription of primarily protein-coding genes. Among the five snRNAs required for pre-mRNA splicing, only the U6 snRNA is synthesized by RNA polymerase III (Pol III). Here we address the question of how Pol II coordinates the expression of spliceosome components, including U6. We used chromatin immunoprecipitation (ChIP) and high-resolution mapping by PCR to localize both Pol II and Pol III to snRNA gene regions. We report the surprising finding that Pol II is highly concentrated ∼300 bp upstream of all five active human U6 genes in vivo. The U6 snRNA, an essential component of the spliceosome, is synthesized by Pol III, whereas all other spliceosomal snRNAs are Pol II transcripts. Accordingly, U6 transcripts were terminated in a Pol III-specific manner, and Pol III localized to the transcribed gene regions. However, synthesis of both U6 and U2 snRNAs was α-amanitin-sensitive, indicating a requirement for Pol II activity in the expression of both snRNAs. Moreover, both Pol II and histone tail acetylation marks were lost from U6 promoters upon α-amanitin treatment. The results indicate that Pol II is concentrated at specific genomic regions from which it can regulate Pol III activity by a general mechanism. Consequently, Pol II coordinates expression of all RNA and protein components of the spliceosome.
Posttranslational modification of proteins by lysine acetylation regulates many biological processes ranging from signal transduction to chromatin compaction. Here we identify the acetyl-transferases CBP/p300, Tip60 and PCAF as new substrates for the ubiquitin E3 ligases SIAH1 and SIAH2. While CBP/p300 can undergo ubiquitin/proteasome-dependent degradation by SIAH1 and SIAH2, the two other acetyl-transferases are exclusively degraded by SIAH2. Accordingly, SIAH-deficient cells show enhanced protein acetylation, thus revealing SIAH proteins as indirect regulators of the cellular acetylation status. Functional experiments show that Tip60/PCAF-mediated acetylation of the tumor suppressor p53 is antagonized by the p53 target gene SIAH2 which mediates ubiquitin/proteasome-mediated degradation of both acetyl-transferases and consequently diminishes p53 acetylation and transcriptional activity. The p53 kinase HIPK2 mediates hierarchical phosphorylation of SIAH2 at 5 sites, which further boosts its activity as a ubiquitin E3 ligase for several substrates and therefore dampens the late p53 response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.