Because of their unique attributes of plasticity and accessibility, bone marrow-derived mesenchymal stem cells (MSCs) may find use for therapy of neurodegenerative disorders. Our previous studies of adult human MSCs demonstrated that these cells express an extensive assortment of neural genes at a low but clearly detectable level. Here, we report expression of 12 neural genes, 8 genes related to the neuro-dopaminergic system, and 11 transcription factors with neural significance by human MSCs. Our results suggest that, as opposed to cells that do not express neural genes, human MSCs are predisposed to differentiate to neuronal and glial lineages, given the proper conditions. Our findings add a new dimension in which to view adult stem cell plasticity, and may explain the relative ease with which MSCs, transplanted into the central nervous system (CNS) differentiate to a variety of functional neural cell types. Our results further promote the possibility that adult human MSCs are promising candidates for cell-based therapy of neurodegenerative diseases.
Several reports have shown that human mesenchymal stem cells (MSCs) are capable of differentiating outside the mesenchymal lineage. We sought to induce MSCs to differentiate into dopamine-producing cells for potential use in autologous transplantation in patients with Parkinson's disease (PD). Following cell culture with various combinations of differentiation agents under serum-free defined conditions, different levels of up-regulation were observed in the protein expression of tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis. Further analysis of selected differentiation protocols revealed that the induced cells displayed a neuron-like morphology and expressed markers suggesting neuronal differentiation. In addition, there was an increase in Nurr 1, the dopaminergic transcription factor gene, concomitant with a decrease gamma-aminobutyric acid (GABA)ergic marker expression, suggesting a specific dopaminergic direction. Moreover, the induced cells secreted dopamine in response to depolarization. These results demonstrate the great therapeutic potential of human MSCs in PD.
Mammalian neurogenesis has been demonstrated in the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of the dentate gyrus in the hippocampus. However, the low rate and the restricted long term survival of newborn cells limit the restorative ability of this process. Adult bone marrow derived mesenchymal stem cells (MSCs) have been extensively studied due to their wide therapeutic potential. The aim of this study was to determine if MSC transplantation to the normally restrictive SVZ of mice housed in an enriched environment stimulates endogenous neurogenesis. In the presented study 30 C57BL/6 female mice were divided into 3 groups: standard environment injected with phosphate buffered saline (PBS) and enriched environment injected with either PBS or MSCs. Bromodeoxyuridine was injected for 6 days, and 3 weeks later the mice were sacrificed and the brain tissue analyzed immunohistochemically. PBS-treated mice housed in enriched cages showed augmented neurogenesis in the SGZ but not the SVZ. MSC transplantation was associated with increased proliferation and neuronal differentiation of neural progenitors within the SVZ and an increase in the proportion of the newborn neurons out of the total proliferating cells. Histological analysis confirmed the survival of a significant amount of the transplanted cells at least 3 weeks after transplantation, and the presence of brain-derived neurotrophic factor expression. To our knowledge, this is the first study to show that MSCs might interfere with the tight regulation of the SVZ, independent of the induced brain lesion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.