Catalytic naphtha reforming is extensively applied in petroleum refineries and petrochemical industries to convert low-octane naphtha into high-octane gasoline. Besides, this process is an important source of hydrogen and aromatics obtained as side products. The bifunctional Pt-catalysts for reforming are deactivated by coke formation during an industrial operation. This results to a reduction in the yield and octane number. In this paper modeling and optimization of a semi-egenerative catalytic reforming of naphtha is carried out considering catalyst deactivation and a complex multicomponent composition of a hydrocarbon mixture. The mathematical model of semi-egenerative catalytic reforming considering coke formation process was proposed. The operating parameters (yield, octane number, activity) for different catalysts were predicted and optimized. It was found that a decrease in the pressure range from 1.5 to 1.2 MPa at the temperature 478–481 °C and feedstock space velocity equal to 1.4–1 h induces an increase in the yield for 1–2 wt.% due to an increase in the aromatization reactions rate and a decrease in the hydrocracking reactions rate depending on the feedstock composition and catalyst type. It is shown that the decrease in pressure is limited by the requirements for the catalyst stability due to the increase in the coke formation rate. The criterion of optimality is the yield, expressed in octanes per tons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.