Pronounced subsidence leading to summer drought over southern Africa causes warmer than average surface air temperatures or even heatwave (HW) conditions. We investigated the occurrence of HWs during the summer drought over South Africa based on station data and the ECMWF ERA5 reanalyses. Temperature observations from the South African Weather Service were analyzed for seasonality and long-term trends (1981–2020) as background to the occurrence and variability of HWs. We focused on three severe El Niño Southern Oscillation (ENSO)-induced drought seasons, i.e., 1982/83, 1991/92, and 2015/16, to investigate HW characteristics. While 1997/98 was among the strongest El Niño seasons, the impacts were not as severe because it coincided with an intense Angola low, which allowed for rain-bearing cloud bands to form. Results showed that the hottest months were spread across the austral summer season from December to February. Regions experiencing high mean maximum temperatures and high HW frequencies exhibited a strong ENSO signal, with record HWs occurring during 2015/16. The establishment and persistence of a middle-level high-pressure system over Botswana/Namibia (Botswana High) appears to trigger the longest-lasting HWs during drought seasons. The Botswana high is usually coupled with a near-surface continental heat low and/or tropical warm air advection towards the affected region. It was also found that intense ENSO-induced drought events coincided with high HW frequency over South Africa, such as during 1982/83, 1991/92, and the recent 2015/16 events. The results of this study contribute to understanding drought and heat wave dynamics in a region experiencing rapid warming as a result of climate change.
Extreme rainfall associated with mid-tropospheric cut-off low (COL) pressure systems affected the entire east coast of South Africa during April 2022, leading to flooding and destruction of homes, electricity power lines, and road infrastructure, and leaving 448 people confirmed dead. Therefore, this study investigated the evolution of the two COLs and their impacts, including the occurrence of extreme rainfall and cold weather over the southeast coast of the country. We analysed observed and reanalysis meteorological data and mapped areas at risk to impacts of flood hazards on the east coast of South Africa. Extreme rainfall (>500 mm) accumulated over 16 days was observed along the east coast, with the amount of rainfall progressively decreasing inland. We found that the rainfall associated with the first COL was significantly enhanced by the interactions between a strong low-level onshore airflow across the Agulhas Current and the coastal escarpment, resulting in deep convection and lifting. An unusual surface cyclone with tropical characteristics developed over the subtropical southwest Indian Ocean, driving onshore southeasterly winds which enhanced low-level convergence. Moreover, the flood risk results revealed that, amongst others, land cover/use (52.8%), elevation (16.8%) and lithology (15.5%) were the most important flood predictor variables in this study. Much of the study area was found to have very low (28.33%), low (31.82%), and moderate (21.66%) flood risk, whilst the high- and very-high-risk areas accounted for only 17.5% of the total land area. Nonetheless, the derived flood risk map achieved an acceptable level of accuracy of about 89.9% (Area Under Curve = 0.899). The findings of this study contribute to understanding extreme rainfall events and the vulnerability of settlements on South Africa’s east coast to flood risk, which can be used towards natural disaster risk reduction.
Every year, cut-off low (COL) pressure systems produce severe weather conditions and heavy rainfall, often leading to flooding, devastation and disruption of socio-economic activities in South Africa. COLs are defined as cold-cored synoptic-scale mid-tropospheric low-pressure systems which occur in the mid-latitudes and cause persistent heavy rainfall. As they occur throughout the year, these weather systems are important rainfall producing systems that are also associated with extreme cold conditions and snowfalls. An in-depth review of COLs is critical due to their high impacts which affect some parts of the country regularly, affecting lives and livelihoods. Here, we provide a comprehensive review of the literature on COLs over the South African domain, whilst also comparing them with their Southern Hemisphere counterparts occurring in South America and Australia. We focus on the occurrence, development, propagation, dynamical processes and impacts of COLs on society and the environment. We also seek to understand stratospheric–tropospheric exchanges resulting from tropopause folding during the occurrence of COLs. Sometimes, COLs may extend to the surface, creating conditions conducive to extreme rainfall and high floods over South Africa, especially when impinged on the coastal escarpment. The slow propagation of COLs appears to be largely modulated by a quasi-stationary high-pressure system downstream acting as a blocking system. We also reviewed two severe COL events that occurred over the south and east coasts and found that in both cases, interactions of the low-level flow with the escarpment enhanced lifting and deep convection. It was also determined from the literature that several numerical weather prediction models struggle with placement and amounts of rainfall associated with COLs, both near the coast and on the interior plateau. Our study provides the single most comprehensive treatise that deals with COL characteristics affecting the South African domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.