River health monitoring is becoming increasingly important because of the anthropogenic activities that continue to impact on water quality and biodiversity of aquatic systems. This study aimed at identifying and evaluating macroinvertebrate community-based metrics that best respond to degradation due to urban pollution in riverine systems of Bulawayo, Zimbabwe. Data (physicochemical variables and macroinvertebrate specimens) were collected from 17 sites over 3 seasons. The sites were selected across an impairment gradient comprising less impacted, moderately impacted and heavily impacted sites. Heavily impacted sites had the highest levels of total dissolved solids, conductivity, salinity, turbidity, total phosphates, total nitrogen, chemical oxygen demand and sedimentary zinc. Dissolved oxygen was significantly highest in less impacted sites. Sensitivity of 24 macroinvertebrate metrics to this impairment gradient were assessed. A total of 5 metrics were identified as sensitive to modifications in water quality due to urban pollution. These metrics were taxon richness, South African Scoring System (SASS5) score, average score per taxon (ASPT), percentage collectors and percentage scrapers. The selected metrics will be useful for the monitoring and assessment of the studied riverine systems and can be further integrated into one multimetric index that combines a range of indices and allows the integration of ecological information for better management of aquatic ecosystems in this region.
This study evaluates the relative contribution of reproduction-based life history traits and diet to the population trends in waterbirds from southern Africa. Life history traits (clutch size, incubation period, fledging time, body mass and generation length), diet (prey weight, body lengths and number of taxa represented in its diet (NTD)) and conservation status (declining/not declining) of 163 waterbird species were reviewed. An index of diet generalism was created based on NTD. Cluster analysis was applied on life history traits to define groups of waterbirds. Binomial regressions were used to test if population trends were different across cluster groups and diet variables. Four clusters of waterbirds were defined, with most waterfowl clustering together. Species that feed on small and large prey had higher probabilities of declining (0.17 and 0.26, respectively) compared to those feeding on medium-sized prey (0.08). Amphibians, coleopterans, crustacea, molluscs and tunicates were used by species in all clusters, and the risk of waterbird populations declining further are high given the current dwindling of the prey base. The large proportions of declining species (61%) in waterbirds, which have constrained habitats, calls for continued efforts to mitigate disturbances to wetlands.
BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.