Context: The resistance of Plasmodium species to many available antimalarials calls for a continuous search for newer antimalarial agents. One possible source of new antimalarials is from natural sources such as Fagara zanthoxyloides Lam (Rutaceae), a medicinal plant used traditionally for treating malaria in South-Eastern Nigeria, Uganda and Asia.Objectives: To investigate the application of methanol extracts of F. zanthoxyloides in combating malaria infection and its associated disorders.Materials and methods: Methanol extracts of F. zanthoxyloides leaves (MEFZ) were evaluated for in vivo antimalarial activity. MEFZ at doses of 200, 400, and 600 mg/kg/d were administered orally for 4 consecutive days (days 0–4) to P. berghei-infected mice. The possible ameliorative effects of MEFZ on malaria-associated organ malfunctions were also assessed.Results: At 200, 400 and 600 mg/kg b.w., respectively, MEFZ produced 82.37% and 68.39%, 84.84%, and 90.75%, 95.95% and 92.67% chemosuppression and inhibition of P. berghei, respectively, comparable to 98.67% and 97.29% by combisunate, a standard antimalarial. The IC50 of MEFZ was estimated to be 235.23 mg/kg b.w. Similarly, treatment of parasitized mice with MEFZ significantly restored the malaria-modified haematological and biochemical status of the parasitized-MEFZ-treated mice compared with parasitized-untreated mice. MEFZ was tolerable up to 5000 mg/kg b.w dose; hence, the LD50 is above 5000 mg/kg b.w.Discussion and conclusions: The results of this curative assay demonstrated that MEFZ has antimalarial effects and normalized haematological and biochemical aberrations generated by malaria. The isolation of the antimalarial principles in MEFZ is warranted; they could be lead molecules for the development of new antimalarials.
Zanthoxylum species (Syn. Fagara species) of the Rutaceae family are widely used in many countries as food and in trado-medicinal practice due to their wide geographical distribution and medicinal properties. Peer reviewed journal articles and ethnobotanical records that reported the traditional knowledge, phytoconstituents, biological activities and toxicological profiles of Z. species with a focus on metabolic and neuronal health were reviewed. It was observed that many of the plant species are used as food ingredients and in treating inflammation, pain, hypertension and brain diseases. Over 500 compounds have been isolated from Z. species, and the biological activities of both the plant extracts and their phytoconstituents, including their mechanisms of action, are discussed. The phytochemicals responsible for the biological activities of some of the species are yet to be identified. Similarly, biological activities of some isolated compounds remain unknown. Taken together, the Z. species extracts and compounds possess promising biological activities and should be further explored as potential sources of new nutraceuticals and drugs.
The health benefits and toxicity of plant products are largely dependent on their secondary metabolite contents. These compounds are biosynthesized by plants as protection mechanisms against environmental factors and infectious agents. This review discusses the traditional uses, phytochemical constituents and health benefits of plant species in genus Zanthoxylum with a focus on cancer, microbial and parasitic infections, and sickle cell disease as reported in articles published from 1970 to 2021 in peer-reviewed journals and indexed in major scientific databases. Generally, Z. species are widely distributed in Asia, America and Africa, where they are used as food and for disease treatment. Several compounds belonging to alkaloids, flavonoids, terpenoids, and lignans, among others have been isolated from Z. species. This review discusses the biological activities reported for the plant species and their phytochemicals, including anticancer, antibacterial, antifungal, antiviral, anti-trypanosomal, antimalarial and anti-sickling properties. The safety profiles and suggestions for conservation of the Z. species were also discussed. Taken together, this review demonstrates that Z. species are rich in a wide range of bioactive phytochemicals with multiple health benefits, but more research is needed towards their practical application in the development of functional foods, nutraceuticals and lead compounds for new drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.