Estrogens and estrogen receptors (ERs), such as ERα and ERβ, prolactin (PRL) and prolactin receptor (PRLR) have been reported to be involved in the physiopathology of uterine cervical cancer (UCC). The 60 kDa PRL is an isoform of PRL, which is produced by UCC-derived cells. The present study aimed to evaluate the expression of hormonal receptors in different degrees of cervical lesions, and to determine whether 60 kDa PRL and 17β-estradiol (E2) modulated cell survival and metabolism in UCC cells, and in HaCaT cells transduced with human papillomavirus (HPV) 16 and 18 E6/E7 oncogenes. ERα, ERβ, PRLR, Ki67 and B-cell lymphoma 2 expression levels were analyzed in biopsies of precursor lesions and UCC using immunohistochemistry. In addition, HeLa, SiHa and C33A cells, and transduced HaCaT cells, were stimulated with 60 kDa PRL, E2 or a combination of both. Proliferation was evaluated using the xCELLigence platform, apoptosis was analyzed by flow cytometry and cell metabolism was determined using the MTT assay. The results revealed that ERα, ERβ, PRLR and Ki67 expression levels were increased during the progression of cancer. In vitro, 60 kDa PRL alone significantly increased proliferation of SiHa cells. Furthermore, E2 alone or in combination with 60 kDa PRL increased the sensitivity of SiHa cells to cisplatin and increased the percentage of apoptosis; in HaCaT cells, these treatment strategies had the opposite effect on cisplatin sensitivity. Treatment with E2 increased mitochondrial activity in HeLa and SiHa cells, and in HaCaT cells transduced with HPV 16 E6/E7 and HPV 18 E6 oncogenes. PRL had a similar effect on HeLa cells, and on HaCaT cells transduced with HPV 18 E6 and HPV 16 E7. The co-expression of these receptors demonstrated the hormonal dependence of UCC. In addition, E2 and the 60 kDa PRL significantly impacted the metabolism, but not the survival, of cells.
Background
Cervical cancer (CC) is the second most common cancer in less developed countries and the second leading cause of death by cancer in women worldwide. The 99% of CC patients are infected with the Human Papilloma Virus (HPV), being HPV16 and HPV18 infection the most frequent. Even though HPV is considered to be a necessary factor for the development of CC, it is not enough, as it requires the participation of other factors such as the hormonal ones. Several studies have demonstrated the requirement of estrogen and its receptors (ERα, ERβ, and GPER) in the precursor lesions progress towards CC. Also, prolactin (PRL) and its receptor (PRLR) have been associated with CC. The molecular mechanisms underlying the cooperation of these hormones with the viral oncoproteins are not well elucidated. For this reason, this study focused on analyzing the contribution of 17β-estradiol (E2), PRL, and HPV on the expression and localization of hormone receptors, as well as to evaluate whether these hormones may promote greater expression of HPV oncogenes and contribute to tumor progression.
Methods
qPCR was used to evaluate the effect of E2 and PRL on the expression of E6 and E7 oncoproteins in HeLa and SiHa cervical cancer cells lines. HaCaT cells were transduced with the viral oncogenes E6 and E7 from HPV 16 and 18. ERα, ERβ, GPER, and PRLR expression and localization were evaluated by qPCR, Western blot and immunofluorescence.
Results
E2 and PRL induce E6/E7 oncogenes expression in HeLa and SiHa cells. E6 and E7 oncogenes of HPV16/18 significantly increased the protein expression of ERα, GPER, and PRLR. ERβ was positively regulated only by E6 oncogenes of HPV16/18. Besides, some of these oncogenes modify the location of PRLR toward cytoplasm, and ERα, ERβ, and GPER mainly to the nucleus.
Conclusion
Our studies suggest that the mutual regulation between E2, PRL, and HPV oncogenes could cooperate with the carcinogenesis process in CC.
Natural killer (NK) cells play a crucial role in cervical cancer (CC). As estrogens and prolactin (PRL) have been reported to be involved in CC, the present study attempted to elucidate the effects of both hormones on NK cells in CC. For this purpose, NKL cells, as well as CC-derived cell lines (HeLa, SiHa and C33A) and non-tumorigenic keratinocytes (HaCaT cells) were stimulated with 17β-estradiol (E2; 10 nM), PRL (200 ng/ml), or both (E2 and PRL) for 48 h. The expression of hormone receptors (estrogen receptor α and β, G protein-coupled estrogen receptor 1 and PRL receptor) and NK cell activating receptors [natural killer group 2D (NKG2D), natural cytotoxicity triggering receptor 3, natural cytotoxicity triggering receptor 2 and natural cytotoxicity triggering receptor 1] were measured using western blot analysis and flow cytometry, respectively. In the HeLa, SiHa, C33A and HaCaT cells stimulated with the hormones, the expression of NKG2D ligands [MHC class I polypeptide-related sequence A/B (MICA/B)] on the membrane and the soluble form of MICA was evaluated using flow cytometry and ELISA. Cytotoxicity assay was performed using GFP-transfected K562 cells as target cells. E2 reduced NKL cell-mediated cytotoxicity, while PRL exerted the opposite effect. NKL cells expressed different hormone receptor forms, of which PRL only induced a decrease in NKG2D expression compared to the untreated control NKL cells. PRL increased MICA/B expression in HeLa cells and E2 and PRL reversed this effect. However, in SiHa cells, the concurrent incubation with the two hormones decreased MICA/B expression. E2 and PRL, either alone or in combination, decreased soluble MICA secretion in all CC cell lines, while E2 solely increased soluble MICA secretion in SiHa cells. On the whole, the present study provides evidence that E2 and PRL mediate the mechanisms through which NK and CC cells mediate a cytotoxic response and these have an antagonistic effect on NK cell-mediated cytotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.