In this work a reduced order model based on adaptive finite element meshes and a correction term obtained by using an artificial neural network (FAN-ROM) is presented. The idea is to run a high-fidelity simulation by using an adaptively refined finite element mesh, and compare the results obtained with those of a coarse mesh finite element model. From this comparison, a correction forcing term can be computed for each training configuration. A model for the correction term is built by using an artificial neural network, and the final reduced order model is obtained by putting together the coarse mesh finite element model, plus the artificial neural network model for the correction forcing term.The methodology is applied to non-linear solid mechanics problems, transient quasi-incompressible flows, and a fluid-structure interaction problem. The results of the numerical examples show that the FAN-ROM is capable of improving the simulation results obtained in coarse finite element meshes at a reduced computational cost.
In this work a new methodology for finite strain solid dynamics problems for stress accurate analysis including the incompressible limit is presented.In previous works, the authors have presented the stabilized mixed displacement/pressure formulation to deal with the incompressibility constraint in finite strain solid dynamics. To this end, the momentum equation is complemented with a constitutive law for the pressure which emerges from the deviatoric/volumetric decomposition of the strain energy function for any hyperelastic material model. The incompressible limit is attained automatically depending on the material bulk modulus. This work exploits the concept of mixed methods to formulate stable displacement/pressure/deviatoric stress finite elements. The final goal is to design a finite element technology able to tackle simultaneously problems which may involve incompressible behavior together with a high degree of accuracy of the stress field. The variational multi-scale stabilization technique and, in particular, the orthogonal subgrid scale method allows the use of equal-order interpolations. These stabilization procedures lead to discrete problems which are fully stable, free of volumetric locking, stress oscillations and pressure fluctuations. Numerical benchmarks show that the results obtained compare very favorably with those obtained with the corresponding stabilized mixed displacement/pressure formulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.