In vascular smooth muscle, it has been described that testosterone (TES) produces relaxation by blocking L-type Ca(2+) channels. Recently, we found that L-type Ca(2+) and store-operated Ca(2+) (SOC) channels are the main membranal structures that provide extracellular Ca(2+) for carbachol (CCh)-induced contraction in airway smooth muscle (ASM). We studied the possible interactions between L-type and SOC channels in TES-induced relaxation in guinea pig ASM. TES (10, 32, 100, and 178 μM) induced a complete relaxation of CCh-precontracted tracheal smooth muscle, and indomethacin partially inhibited this response. In single myocytes, the KCl-induced intracellular Ca(2+) increase ([Ca(2+)]i) was decreased by 32 and completely blocked by 100 nM TES. This androgen (32 and 100 μM) significantly diminished (~25 and 49 %, respectively) the capacitative Ca(2+) entry. Myocytes stimulated with CCh produced a transient Ca(2+) peak followed by a sustained plateau. D-600 was added during the plateau phase, and a partial diminution (~35 %) was observed. A greater decrease (~78 %) was seen when 2-aminoethyl diphenylborinate (2-APB, SOC antagonist) was used. The combination of both drugs completely abolished the Ca(2+) plateau induced by CCh. TES (100 μM) also completely abolished the CCh-induced Ca(2+) plateau. Indomethacin significantly diminished this effect of TES. PGE2 and butaprost proportionally decreased the Ca(2+) plateau as indomethacin blocked it. Sarcoplasmic reticulum refilling was partially, dependently, and significantly diminished by TES. We concluded that TES-induced relaxation involves blockade of L-type Ca(2+) channels at nanomolar and SOC channels at micromolar concentration and PGE2 seems to be also involved in this phenomenon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.