A series of experiments were conducted to quantify and characterize the optical and physical properties of combustion-generated aerosols during both flaming and smoldering combustion of three materials common to underground mines—Pittsburgh Seam coal, Styrene Butadiene Rubber (a common mine conveyor belt material), and Douglas-fir wood—using a combination of analytical and gravimetric measurements. Laser photometers were utilized in the experiments for continuous measurement of aerosol mass concentrations and for comparison to measurements made using gravimetric filter samples. The aerosols of interest lie in the size range of tens to a few hundred nanometers, out of range of the standard photometer calibration. To correct for these uncertainties, the photometer mass concentrations were compared to gravimetric samples to determine if consistent correlations existed. The response of a calibrated and modified combination ionization/photoelectric smoke detector was also used. In addition, the responses of this sensor and a similar, prototype ionization/photoelectric sensor, along with discrete angular scattering, total scattering, and total extinction measurements, were used to define in real time the size, morphology, and radiative transfer properties of these differing aerosols that are generally in the form of fractal aggregates. SEM/TEM images were also obtained in order to compare qualitatively the real-time, continuous experimental measurements with the visual microscopic measurements. These data clearly show that significant differences exist between aerosols from flaming and from smoldering combustion and that these differences produce very different scattering and absorption signatures. The data also indicate that ionization/photoelectric sensors can be utilized to measure continuously and in real time aerosol properties over a broad spectrum of applications related to adverse environmental and health effects.
A series of large-scale experiments were conducted in an above-ground fire gallery using three different types of fire-resistant conveyor belts and four air velocities for each belt. The goal of the experiments was to understand and quantify the effects of air velocity on the detection of fires in underground conveyor belt haulageways and to determine the rates of generation of toxic gases and smoke as a fire progresses through the stages of smoldering coal, flaming coal, and finally a flaming conveyor belt. In the experiments, electrical strip heaters, imbedded approximately 5 cm below the top surface of a large mass of coal rubble, were used to ignite the coal, producing an open flame. The flaming coal mass subsequently ignited 1.83-m-wide conveyor belts located approximately 0.30 m above the coal surface. Gas samples were drawn through an averaging probe for continuous measurement of CO, CO 2 , and O 2 as the fire progressed. Approximately 20 m from the fire origin and 0.5 m below the roof of the gallery, two commercially available smoke detectors, a light obscuration meter, and a sampling probe for measurement of total mass concentration of smoke particles were placed. Two video cameras were located upstream of the fire origin and along the gallery at about 14 m and 5 m in order to detect both smoke and flames from the fire. This paper discusses the impact of ventilation airflow on alarm times of the smoke detectors and video cameras, CO levels, smoke optical densities and smoke obscuration, total smoke mass concentrations, and fire heat release rates, examining how these various parameters depend upon air velocity and air quantity, the product of air velocity, and entry cross-section.
The Mine Safety and Health Administration (MSHA) specification for rock dust used in underground coal mines, as defined by 30 CFR 75.2, requires 70% of the material to pass through a 200 mesh sieve (<75 µm). However, in a collection of rock dusts, 47% were found to not meet the criteria. Upon further investigation, it was determined that some of the samples did meet the specification, but were inadequate to render pulverized Pittsburgh coal inert in the National Institute for Occupational Safety and Health (NIOSH) Office of Mine Safety and Health Research (OMSHR) 20-L chamber. This paper will examine the particle size distributions, specific surface areas (SSA), and the explosion suppression effectiveness of these rock dusts. It will also discuss related findings from other studies, including full-scale results from work performed at the Lake Lynn Experimental Mine. Further, a minimum SSA for effective rock dust will be suggested.
This paper presents the results obtained from detailed studies of the properties of smoke particles produced from a wide range of flaming and non-flaming combustible materials and discusses how these properties impact early-warning fire detection as well as the hazards of smoke particle toxicity and reduced visibility that can significantly affect life safety. Data acquired include discrete angular scattering at wavelengths of 635 nm and 532 nm; visible light obscuration; light extinction at a wavelength of 532 nm and total light scattering at a wavelength of 520 nm; the responses of calibrated combination ionization/photoelectric smoke sensor; and total mass concentrations. These data are subsequently used to define the size, morphology and radiative transfer properties of the fractal aggregate smoke particles including radius of gyration, primary particle diameter, number of primary particles per aggregate, mass of an aggregate, mass extinction, scattering and absorption coefficients and the resultant albedo. Scanning electron microscope (SEM)/transmission electron microscope (TEM) data and computer-generated fractal aggregates are compared to determine similar morphologies and then used to calculate theoretical values of scattering, absorption, and extinction efficiencies using both the discrete dipole approximation (DDA) and the Rayleigh-Debye-Gans (RDG) approximation for subsequent comparison to the experimental data. These data and analyses indicate that significant differences exist between flaming and non-flaming smoke particles in terms of size, morphology and radiative transfer properties. From a practical viewpoint, the analyses also indicate possible techniques for development of improved early warning fire sensors and smarter, discriminating fire sensors that can function in hostile, contaminated atmospheres such as mines and tunnels. These atmospheres may contain significant levels of combustion products from internal combustion engines, such as diesels, that are used routinely in underground mines. In addition, the much higher albedos measured for non-flaming smoke particles are indicative of significantly lower carbon content and higher levels of volatile organic compounds that have the potential for increased acute toxicity due to their higher reactivity. The paper demonstrates how the basic data can be used to implement improved fire detection systems and improve our ability to assess hazards resulting from potentially catastrophic mine fires.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.