Half of mammalian transcripts contain short upstream open reading frames (uORFs) that potentially regulate translation of the downstream coding sequence (CDS). The molecular mechanisms governing these events remain poorly understood. Here, we find that the non-canonical initiation factor Death-associated protein 5 (DAP5 or eIF4G2) is required for translation initiation on select transcripts. Using ribosome profiling and luciferase-based reporters coupled with mutational analysis we show that DAP5-mediated translation occurs on messenger RNAs (mRNAs) with long, structure-prone 5′ leader sequences and persistent uORF translation. These mRNAs preferentially code for signalling factors such as kinases and phosphatases. We also report that cap/eIF4F- and eIF4A-dependent recruitment of DAP5 to the mRNA facilitates main CDS, but not uORF, translation suggesting a role for DAP5 in translation re-initiation. Our study reveals important mechanistic insights into how a non-canonical translation initiation factor involved in stem cell fate shapes the synthesis of specific signalling factors.
Repeated herbicide applications exert enormous selection on blackgrass (Alopecurus myosuroides), a major weed in cereal crops of the temperate climate zone including Europe. This inadvertent large-scale experiment gives us the opportunity to look into the underlying genetic mechanisms and evolutionary processes of rapid adaptation, which can occur both through mutations in the direct targets of herbicides and through changes in other, often metabolic, pathways, known as non-target-site resistance. How much either type of adaptation relies on de novo mutations versus pre-existing standing variation is important for developing strategies to manage herbicide resistance. We generated a chromosome-level reference genome for A. myosuroides for population genomic studies of herbicide resistance and genome-wide diversity across Europe in this species. Bulked-segregant analysis evidenced that non-target-site resistance has a complex genetic architecture. Through empirical data and simulations, we showed that, despite its simple genetics, target-site resistance mainly results from standing genetic variation, with only a minor role for de novo mutations.
Repeated herbicide applications in agricultural fields exert strong selection on weeds such as blackgrass ( Alopecurus myosuroides ), which is a major threat for temperate climate cereal crops. This inadvertent selection pressure provides an opportunity for investigating the underlying genetic mechanisms and evolutionary processes of rapid adaptation, which can occur both through mutations in the direct targets of herbicides and through changes in other, often metabolic, pathways, known as non-target-site resistance. How much target-site resistance (TSR) relies on de novo mutations vs. standing variation is important for developing strategies to manage herbicide resistance. We first generated a chromosome-level reference genome for A. myosuroides for population genomic studies of herbicide resistance and genome-wide diversity across Europe in this species. Next, through empirical data in the form of highly accurate long-read amplicons of alleles encoding acetyl-CoA carboxylase (ACCase) and acetolactate synthase (ALS) variants, we showed that most populations with resistance due to TSR mutations—23 out of 27 and six out of nine populations for ACCase and ALS , respectively—contained at least two TSR haplotypes, indicating that soft sweeps are the norm. Finally, through forward-in-time simulations, we inferred that TSR is likely to mainly result from standing genetic variation, with only a minor role for de novo mutations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.