The efficient use of nitrogen fertilizer is a crucial problem in modern agriculture. Fertilization has to be minimized to reduce environmental impacts but done so optimally without negatively affecting yield. In June 2017, a controlled experiment with eight different nitrogen treatments was applied to winter wheat plants and investigated with the UAV-based hyperspectral pushbroom camera Resonon Pika-L (400-1000 nm). The system, in combination with an accurate inertial measurement unit (IMU) and precise gimbal, was very stable and capable of acquiring hyperspectral imagery of high spectral and spatial quality. Additionally, in situ measurements of 48 samples (leaf area index (LAI), chlorophyll (CHL), and reflectance spectra) were taken in the field, which were equally distributed across the different nitrogen treatments. These measurements were used to predict grain yield, since the parameter itself had no direct effect on the spectral reflection of plants. Therefore, we present an indirect approach based on LAI and chlorophyll estimations from the acquired hyperspectral image data using partial least-squares regression (PLSR). The resulting models showed a reliable predictability for these parameters (R 2 LAI = 0.79, RMSE LAI [m 2 m −2 ] = 0.18, R 2 CHL = 0.77, RMSE CHL [µg cm −2 ] = 7.02). The LAI and CHL predictions were used afterwards to calibrate a multiple linear regression model to estimate grain yield (R 2 yield = 0.88, RMSE yield [dt ha −1 ] = 4.18). With this model, a pixel-wise prediction of the hyperspectral image was performed. The resulting yield estimates were validated and opposed to the different nitrogen treatments, which revealed that, above a certain amount of applied nitrogen, further fertilization does not necessarily lead to larger yield.From the farmer's perspective, the most important economic parameter is achieved yields. An overdose of N fertilizer, within the legal limits, results higher costs without adding value in terms of additional yield. Further possible regulations for the application of fertilizers should only have a limited negative impact on yields. With controlled experiments, directly comparing the harvested yield resulting from different N applications, one can identify the effects of reduced fertilization. Moreover, new concepts of monitoring these effects during vegetative growth enables the development of precision farming applications, especially created for efficient N fertilization [3].Remote sensing technology at various scales has often proved to be a suitable tool for agricultural crop monitoring [4]. In particular, UAV-supported remote sensing enables very precise monitoring of individual areas through lower flight altitudes and high-resolution data [5]. In recent years, the development of UAV-based hyperspectral recording systems has made rapid progress [6]. In comparison to manned aircraft based systems, the sensors are smaller, lighter, and less costly during acquisition and processing [7]. The great potential of this technology has been demonstrated [8].Hyper...
Despite intensive efforts motivated by the European Water Framework Directive, many water bodies still suffer from poor water quality in Germany. Intensively drained agricultural areas are still a critical source for nitrate which is responsible for negative effects on aquatic ecosystems. Basic measures such as the fertiliser ordinance are expected to be not sufficient to completely eliminate nitrate exports via drainage tiles and ditches. Consequently, there is the demand to manage the reduction of nitrate concentrations with new additional end of pipe solutions. For this, the presented study focuses on a simply to implement reactive ditch for denitrification, which is installed into drainage ditches to reduce nitrate concentrations. An existing drainage ditch that is fed by tile drainage water was filled with wood chips to keep installation efforts as simple and cheap as possible. In situ parameters and nutrient concentrations were determined at the inflow and the outflow of the reactive ditch for 2 years.The results reveal a promising potential for wood chipbased filters to reduce nitrate concentrations by 28 % on average over all seasons. Within the filter, favourable conditions for denitrification were predominantly found without flooding of surrounding areas. Investigations revealed decreasing nitrate concentrations especially in cases of low flow rates and high temperatures. These encouraging results demonstrate the successful application of reactive ditches under German lowland conditions in general. Since tile drainages are installed for many agricultural areas in this region, there seems to be high potential for the application of this easily implementable type of bioreactor.
Groundwater pollution with nitrate is a big challenge for drinking water abstraction in regions with intensive agricultural land-use, specifically with high livestock densities on sandy soils in humid climates. Karst aquifers with high water flow velocities are extremely vulnerable to this problem. To cope with this situation, a field trial with an installation of ceramic suction cups under a randomised block design with a typical north-German cropping sequence of silage maize–winter wheat–winter barley was established in a karst water protection zone. Over three years, reduced nitrogen (N) application rates and N type (mineral or combined organic + mineral fertilisation) were tested for their effects on crop yields and leachate water quality below the root zone. Results showed no significant reductions in crop yields with 10/20% reduced N rates for cereals/maize and only slight reductions in cereal protein content. Nitrate concentration from adapted N rates was significantly lower in treatments with an application of organic fertilisers (−7.74 mg NO3-N l−1) with greatest potential after cultivation of maize; in only mineral fertilised plots the effect was smaller (−3.80 mg NO3-N l−1). Cumulative leaching losses were positively correlated with post-harvest soil mineral nitrogen content but even in unfertilised control plots losses >50 kg N ha−1 were observed in some crop-years. Reduced N rates led to decreased leaching losses of 14% (6.3 kg N ha−1 a−1) with mineral and 29% (20.1 kg N ha−1 a−1) with organic + mineral fertilisation on average overall cops and years. The presented study revealed the general potential of adapted fertilisation strategies with moderately reduced N applications (−10/−20%) to increase leachate water quality without affecting significantly crop yields. However, regionally typical after-effects from yearlong high N surpluses in livestock intensive farming systems are a limiting factor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.