The calcium-activated potassium channel 3.1 (K Ca 3.1) is overexpressed in many tumor entities and has predictive power concerning disease progression and outcome. Imaging of the K Ca 3.1 channel in vivo using a radiotracer for positron emission tomography (PET) could therefore establish a potentially powerful diagnostic tool. Senicapoc shows high affinity and excellent selectivity toward the K Ca 3.1 channel. We have successfully pursued the synthesis of the 18 F-labeled derivative [ 18 F]3 of senicapoc using the prosthetic group approach with 1-azido-2-[ 18 F]fluoroethane ([ 18 F]6) in a "click" reaction. The biological activity of the new PET tracer was evaluated in vitro and in vivo. Inhibition of the K Ca 3.1 channel by 3 was demonstrated by patch clamp experiments and the binding pose was analyzed by docking studies. In mouse and human serum, [ 18 F]3 was stable for at least one halflife of [ 18 F]fluorine. Biodistribution experiments in wild-type mice were promising,showing rapid and predominantly renal excretion. An in vivo study using A549based tumor-bearing mice was performed. The tumor signal could be delineated and image analysis showed a tumor-to-muscle ratio of 1.47 ± 0.24. The approach using 1-azido-2-[ 18 F]fluoroethane seems to be a good general strategy to achieve
The Kca3.1 channels, previously designated as IK1 or SK4 channels and encoded by the KCNN4 gene, are activated by a rise of the intracellular Ca2+ concentration. These K+ channels are widely expressed in many organs and involved in many pathologies. In particular, Kca3.1 channels have been studied intensively in the context of cancer. They are not only a marker and a valid prognostic tool for cancer patients, but have an important share in driving cancer progression. Their function is required for many characteristic features of the aggressive cancer cell behavior such as migration, invasion and metastasis as well as proliferation and therapy resistance. In the context of cancer, another property of Kca3.1 is now emerging. These channels can be a target for novel small molecule-based imaging probes, as it has been validated in case of fluorescently labeled senicapoc-derivatives. The aim of this review is (i) to give an overview on the role of Kca3.1 channels in cancer progression and in shaping the cancer microenvironment, (ii) discuss the potential of using Kca3.1 targeting drugs for cancer imaging, (iii) and highlight the possibility of combining molecular dynamics simulations to image inhibitor binding to Kca3.1 channels in order to provide a deeper understanding of Kca3.1 channel pharmacology. Alltogether, Kca3.1 is an attractive therapeutic target so that senicapoc, originally developed for the treatment of sickle cell anemia, should be repurposed for the treatment of cancer patients.
Ion channels play an important role for regulation of the exocrine and the endocrine pancreas. This review focuses on the Ca2+-regulated K+ channel KCa3.1, encoded by the KCNN4 gene, which is present in both parts of the pancreas. In the islets of Langerhans, KCa3.1 channels are involved in the regulation of membrane potential oscillations characterizing nutrient-stimulated islet activity. Channel upregulation is induced by gluco- or lipotoxic conditions and might contribute to micro-inflammation and impaired insulin release in type 2 diabetes mellitus as well as to diabetes-associated renal and vascular complications. In the exocrine pancreas KCa3.1 channels are expressed in acinar and ductal cells. They are thought to play a role for anion secretion during digestion but their physiological role has not been fully elucidated yet. Pancreatic carcinoma, especially pancreatic ductal adenocarcinoma (PDAC), is associated with drastic overexpression of KCa3.1. For pharmacological targeting of KCa3.1 channels, we are discussing the possible benefits KCa3.1 channel inhibitors might provide in the context of diabetes mellitus and pancreatic cancer, respectively. We are also giving a perspective for the use of a fluorescently labeled derivative of the KCa3.1 blocker senicapoc as a tool to monitor channel distribution in pancreatic tissue. In summary, modulating KCa3.1 channel activity is a useful strategy for exo-and endocrine pancreatic disease but further studies are needed to evaluate its clinical suitability.
The Ca 2 + activated K + channel K Ca 3.1 is overexpressed in several human tumor cell lines, e. g. clear cell renal carcinoma, prostate cancer, non-small cell lung cancer. Highly aggressive cancer cells use this ion channel for key processes of the metastatic cascade such as migration, extravasation and invasion. Therefore, small molecules, which are able to image this K Ca 3.1 channel in vitro and in vivo represent valuable diagnostic and prognostic tool compounds. The [ 18 F]fluoroethyltriazolyl substituted senicapoc was used as positron emission tomography (PET) tracer and showed promising properties for imaging of K Ca 3.1 channels in lung adenocarcinoma cells in mice. The novel senicapoc BODIPY conjugates with two F-atoms (9 a) and with a F-atom and a methoxy moiety (9 b) at the B-atom led to the characteristic punctate staining pattern resulting from labeling of single K Ca 3.1 channels in A549-3R cells. This punctate pattern was completely removed by preincubation with an excess of senicapoc confirming the high specificity of K Ca 3.1 labeling. Due to the methoxy moiety at the B-atom and the additional oxyethylene unit in the spacer, 9 b exhibits higher polarity, which improves solubility and handling without reduction of fluorescence quantum yield. Docking studies using a cryoelectron microscopy (EM) structure of the K Ca 3.1 channel confirmed the interaction of 9 a and 9 b with a binding pocket in the channel pore.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.