The clinical pharmacology of elagolix was extensively evaluated in clinical studies in healthy subjects and in women with endometriosis. Elagolix pharmacokinetics (PK) show significant population variability, however they are minimally affected by patients' baseline characteristics and demographics, except for clinically relevant extrinsic and intrinsic factors such as coadministrated strong organic anion transporting polypeptide (OATP) 1B1 inhibitors and severe hepatic impairment, which are contraindications for the use of elagolix. These studies enabled a comprehensive understanding of elagolix mechanism of action and the downstream pharmacodynamic (PD) effects on gonadotropin and ovarian hormones, as well as full characterization of the PK/PD (PKPD) relationships of elagolix at various dosages, including the approved 150 mg once daily and 200 mg twice daily dosing regimens for the management of moderate to severe pain associated with endometriosis. Several model-based analyses have contributed to understanding of the benefit-risk profile of elagolix in patients with endometriosis, through characterization of the exposure relationship with responder rates, with changes in bone mineral density over time, as well as the interaction with coadministered drugs. Collectively, these studies and analyses served as supportive evidence for the effectiveness of the approved dosages and provided general dosing instructions of the first approved oral gonadotropin-releasing hormone receptor antagonist.
Elagolix pharmacokinetics were not affected by patient demographics and were similar between healthy women and women with endometriosis. Clinical Trial Registration Numbers NCT01403038, NCT01620528, NCT01760954, NCT01931670, NCT02143713.
Exposure–response analyses of upadacitinib (UPA) key efficacy and safety end points (3,685 and 4,577 subjects for efficacy and safety, respectively) using data from phase II and phase III rheumatoid arthritis (RA) studies were conducted to support benefit–risk assessment. Percentage of subjects achieving American College of Rheumatology (ACR)20/50/70, disease activity score 28 (C‐reactive protein) (DAS28‐CRP) ≤ 3.2, and DAS28‐CRP < 2.6 increased with increasing UPA plasma exposures. With the small number of observed safety events, no clear trends for exposure–response relationships were identified for pneumonia, herpes zoster infection, changes in platelet count, lymphopenia (Grade ≥ 4), or neutropenia (Grade ≥ 3) up to Week 26. Shallow exposure–response relationships were observed for > 2 g/dL decrease in hemoglobin, lymphopenia Grade ≥ 3 at Week 12/14, and serious infections at Week 24/26. Exposure–efficacy analyses demonstrate that UPA 15 mg q.d. (once daily) dose provided the optimal benefit–risk in RA through maximizing efficacy with only small incremental benefit with 30 mg q.d.; and with consistency across RA subpopulations and with UPA monotherapy or combination with conventional synthetic disease‐modifying antirheumatic drugs.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
Elagolix is a novel oral gonadotropin releasing hormone receptor antagonist, that can suppress estradiol in a dose‐dependent manner. It is indicated for management of moderate‐to‐severe pain associated with endometriosis. A population exposure‐response model describing the relationship between elagolix exposure and changes in bone mineral density (BMD) was developed using data from four phase III studies in premenopausal women with endometriosis‐associated pain. Elagolix pharmacokinetic exposure‐dependent changes in BMD were described by an indirect‐response maximum effect (Emax) model through stimulation of bone resorption. African American race, higher body mass index (BMI), and lower type‐I collagen C‐telopeptide concentrations were significantly associated with higher baseline BMD. Higher BMI was significantly associated with higher bone formation rates. Simulations using the final model demonstrated that elagolix 150 mg q.d. dosing for 24 months is predicted to result in −1.45% (−2.04 to −0.814) decrease from baseline in BMD and were used to support corresponding dosing recommendations in the label.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.