Transient MyoD overexpression in concert with small molecule treatment reprograms mouse fibroblasts into induced myogenic progenitor cells (iMPCs). However, the molecular landscape and mechanisms orchestrating this cellular conversion remain unknown. Here, we undertook an integrative multiomics approach to delineate the process of iMPC reprogramming in comparison to myogenic transdifferentiation mediated solely by MyoD. Using transcriptomics, proteomics, and genome-wide chromatin accessibility assays, we unravel distinct molecular trajectories that govern the two processes. Notably, only iMPC reprogramming is characterized by gradual up-regulation of muscle stem cell markers, unique signaling pathways, and chromatin remodelers in conjunction with exclusive chromatin opening in core myogenic promoters. In addition, we determine that the Notch pathway is indispensable for iMPC formation and self-renewal and further use the Notch ligand Dll1 to homogeneously propagate iMPCs. Collectively, this study charts divergent molecular blueprints for myogenic transdifferentiation or reprogramming and underpins the heightened capacity of iMPCs for capturing myogenesis ex vivo.
Transcription factor-based cellular reprogramming provides an attractive approach to produce desired cell types for regenerative medicine purposes. Such cellular conversions are widely dependent on viral vectors to efficiently deliver and express defined factors in target cells. However, use of viral vectors is associated with unfavorable genomic integrations that can trigger deleterious molecular consequences, rendering this method a potential impediment to clinical applications. Here, we report on a highly efficient transgene-free approach to directly convert mouse fibroblasts into induced myogenic progenitor cells (iMPCs) by overexpression of synthetic MyoD-mRNA in concert with an enhanced small molecule cocktail. First, we performed a candidate compound screen and identified two molecules that enhance fibroblast reprogramming into iMPCs by suppression of the JNK and JAK/STAT pathways. Simultaneously, we developed an optimal transfection protocol to transiently overexpress synthetic MyoD-mRNA in fibroblasts. Combining these two techniques enabled robust and rapid reprogramming of fibroblasts into Pax7 positive iMPCs in as little as 10 days. Nascent transgene-free iMPCs proliferated extensively in vitro, expressed a suite of myogenic stem cell markers, and could differentiate into highly multinucleated and contractile myotubes. Furthermore, using global and single-cell transcriptome assays, we delineated gene expression changes associated with JNK and JAK/STAT pathway inhibition during reprogramming, and identified in iMPCs a Pax7+ stem cell subpopulation resembling satellite cells. Last, transgene-free iMPCs robustly engrafted skeletal muscles of a Duchenne muscular dystrophy mouse model, restoring dystrophin expression in hundreds of myofibers. In summary, this study reports on an improved and clinically safer approach to convert fibroblasts into myogenic stem cells that can efficiently contribute to muscle regeneration in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.