We propose a learning framework named Feature Fusion Learning (FFL) that efficiently trains a powerful classifier through a fusion module which combines the feature maps generated from parallel neural networks. Specifically, we train a number of parallel neural networks as sub-networks, then we combine the feature maps from each sub-network using a fusion module to create a more meaningful feature map. The fused feature map is passed into the fused classifier for overall classification. Unlike existing feature fusion methods, in our framework, an ensemble of sub-network classifiers transfers its knowledge to the fused classifier and then the fused classifier delivers its knowledge back to each sub-network, mutually teaching one another in an online-knowledge distillation manner. This mutually teaching system not only improves the performance of the fused classifier but also obtains performance gain in each subnetwork. Moreover, our model is more beneficial because different types of network can be used for each sub-network. We have performed a variety of experiments on multiple datasets such as CIFAR-10, CIFAR-100 and ImageNet and proved that our method is more effective than other alternative methods in terms of performance of both sub-networks and the fused classifier.
We propose a novel method that tackles the problem of unsupervised domain adaptation for semantic segmentation by maximizing the cosine similarity between the source and the target domain at the feature level. A segmentation network mainly consists of two parts, a feature extractor and a classification head. We expect that if we can make the two domains have small domain gap at the feature level, they would also have small domain discrepancy at the classification head. Our method computes a cosine similarity matrix between the source feature map and the target feature map, then we maximize the elements exceeding a threshold to guide the target features to have high similarity with the most similar source feature. Moreover, we use a classwise source feature dictionary which stores the latest features of the source domain to prevent the unmatching problem when computing the cosine similarity matrix and be able to compare a target feature with various source features from various images. Through extensive experiments, we verify that our method gains performance on two unsupervised domain adaptation tasks (GTA5→Cityscaspes and SYNTHIA→Cityscapes).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.