Proanthocyanidins (PAs) are a group of oligomers or polymers composed of monomeric flavanols. They offer many benefits for human fitness, such as antioxidant, anticancer, and anti-inflammatory activities. To date, three types of PA have been observed in nature: procyanidins, propelargonidins, and prodelphinidins. These are synthesized as some of the end-products of the flavonoid pathway by different consecutive enzymatic activities, from the same precursor—naringenin. Although the general biosynthetic pathways of PAs have been reported in a few model plant species, little is known about the species-specific pathways in major crops containing different types of PA. In the present study, we identified the species-specific pathways in 10 major crops, based on the presence/absence of flavanol-based intermediates in the metabolic pathway, and found 202 orthologous genes in the reference genomic database of each species, which may encode for key enzymes involved in the biosynthetic pathways of PAs. Parallel enzymatic reactions in the pathway are responsible for the ratio between PAs and anthocyanins, as well as among the three types of PAs. Our study suggests a promising strategy for molecular breeding, to regulate the content of PAs and anthocyanins and improve the nutritional quality of food sources globally.
Mungbeans (Vigna radiata L.) are one of major legume crops in Asia as major sources of proteins and carbohydrates. Additionally, they provide functional substances such as vitamin and antioxidant compounds when consumed as bean sprouts. In this study, physical traits of mungbean sprouts, such as sprouts yield, thickness and length of hypocotyl, length of epicotyl, number of lateral roots, and length of root depending on four irrigation conditions (irrigation interval: 2 and 4 hours; irrigation time: 2 and 4 minutes) were measured for three cultivars (Dahyeon, Samgang, Sunhwa). In general, the length and thickness of hypocotyl increased gradually until day 3, followed by a decrease on day 4. Lateral roots and the length of root increased during the cultivation period. Sprouts yield was higher under short irrigation time than long irrigation time until day 3. Preferable traits including sprouts yield, the length of hypocotyl, and the thickness of hypocotyl were better under shorter irrigation time conditions (2 minutes). Traits of negative effect for consumers' preference, such as number of lateral roots and length of epicotyl, were lower under longer irrigation interval conditions (4 hours). Samgang had the highest yield of sprouts. However, it also had the highest growth of epicotyl. Although Sunhwa had preferable physical traits of bean sprouts, it had the least yield of sprouts. Overall, Dahyeon cultivated under 4 hours (irrigation interval) & 2 minutes (irrigation time) condition had the most preferable traits for producing mungbean sprouts. This study provides information about irrigation conditions affecting quality-related traits to produce mungbean sprouts.
Mungbean (Vigna radiata) sprouts are consumed globally as a healthy food with high nutritional values, having antioxidant and anticancer capacity. Under mild salinity stress, plants accumulate more secondary metabolites to alleviate oxidative stress. In this study, metabolomic and transcriptomic changes in mungbean sprouts were identified using a reference cultivar, sunhwa, to understand the regulatory mechanisms of secondary metabolites in response to salinity stress. Under salinity conditions, the contents of phenylpropanoid-derived metabolites, including catechin, chlorogenic acid, isovitexin, p-coumaric acid, syringic acid, ferulic acid, and vitexin, significantly increased. Through RNA sequencing, 728 differentially expressed genes (DEGs) were identified and 20 DEGs were detected in phenylpropanoid and flavonoid biosynthetic pathways. Among them, 11 DEGs encoding key enzymes involved in the biosynthesis of the secondary metabolites that increased after NaCl treatment were significantly upregulated, including dihydroflavonol 4-reductase (log2FC 1.46), caffeoyl-CoA O-methyltransferase (1.38), chalcone synthase (1.15), and chalcone isomerase (1.19). Transcription factor families, such as MYB, WRKY, and bHLH, were also identified as upregulated DEGs, which play a crucial role in stress responses in plants. Furthermore, this study showed that mild salinity stress can increase the contents of phenylpropanoids and flavonoids in mungbean sprouts through transcriptional regulation of the key enzymes involved in the biosynthetic pathways. Overall, these findings will provide valuable information for molecular breeders and scientists interested in improving the nutritional quality of sprout vegetables.
Mung bean is one of the world’s most important legume crops and is a major protein source, particularly in developing countries. Various polyphenolic compounds and nutrients accumulate in mung bean sprouts during germination. Mung bean sprouts are consumed globally as an excellent food source of bioactive phenolic compounds. The contents of phenols and flavonoids and antioxidant activity were monitored for four days after germination under four different spraying conditions using three mung bean cultivars. On the third day after germination, the sprout extract showed the highest antioxidant capacity. The length and thickness of hypocotyl of mung bean sprouts appeared to be the most suitable for consumption on the third day after germination. Using high-performance liquid chromatography analysis, eight phytochemicals were identified, and neochlorogenic acid was identified for the first time in mung bean sprouts. End products (neochlorogenic acid, chlorogenic acid, vitexin, and isovitexin) showed certain trends in their contents for four days, while intermediates (caffeic acid, catechin, syringic acid, and p-coumaric acid) were highly responsive to watering condition and cultivars. Watering interval significantly affected the length of root and lateral root development. Both cultivars and watering conditions and/or their interaction significantly affected the biochemical and physical traits of mung bean sprouts. The results suggest that watering conditions need to be considered as an important factor to improve food quality of mung bean sprouts. Our phenotypic and metabolic profiling would provide potential information for production of mung bean sprouts that fit consumers’ preferences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.