This paper deals with a method for removing a ghost target that is not a real object from the output of a multiple object-tracking algorithm. This method uses an artificial neural network (multilayer perceptron) and introduces a structure, learning, verification, and evaluation method for the artificial neural network. The implemented system was tested at an intersection in a city center. Results from a 28-min measurement were 88% accurate when the multilayer perceptron for ghost target classification successfully detected the ghost targets, and 6.7% inaccurate when ghost targets were mistaken for actual targets. This method is expected to contribute to the advancement of intelligent transportation systems if the weaknesses revealed during the evaluation of the system are complemented and refined.
Abstract:We propose an efficient image-matching method for deformable-object image matching using discrimination of deformable objects and geometric similarity clustering between feature-matching pairs. A deformable transformation maintains a particular form in the whole image, despite local and irregular deformations. Therefore, the matching information is statistically analyzed to calculate the possibility of deformable transformations, and the images can be identified using the proposed method. In addition, a method for matching deformable object images is proposed, which clusters matching pairs with similar types of geometric deformations. Discrimination of deformable images showed about 90% accuracy, and the proposed deformable image-matching method showed an average 89% success rate and 91% accuracy with various transformations. Therefore, the proposed method robustly matches images, even with various kinds of deformation that can occur in them.
Deformable objects have changeable shapes and they require a different method of matching algorithm compared to rigid objects. This paper proposes a fast and robust deformable object matching algorithm. First, robust feature points are selected using a statistical characteristic to obtain the feature points with the extraction method. Next, matching pairs are composed by the feature point matching of two images using the matching method. Rapid clustering is performed using the BST (Binary Search Tree) method by obtaining the geometric similarity between the matching pairs. Finally, the matching of the two images is determined after verifying the suitability of the composed cluster. An experiment with five different image sets with deformable objects confirmed the superior robustness and independence of the proposed algorithm while demonstrating up to 60 times faster matching speed compared to the conventional deformable object matching algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.