Kenaf fibre has high potential to be used for composite reinforcement in biocomposite material. It is made up of an inner woody core and an outer fibrous bark surrounding the core. The aim of this study was to compare the mechanical properties of short kenaf bast and core fibre reinforced unsaturated polyester composites with varying fibre weight fraction i.e. 0%, 5%, 10%, 20%, 30% and 40%. The compression moulding technique was used to prepare the composite specimens for tensile, flexural and impact tests in accordance to the ASTM D5083, ASTM D790 and ASTM D256 respectively. The overall results showed that the composites reinforced with kenaf bast fibre had higher mechanical properties than kenaf core fibre composites. The results also showed that the optimum fibre content for achieving highest tensile strength for both bast and core fibre composites was 20%wt. It was also observed that the elongation at break for both composites decreased as the fibre content increased. For the flexural strength, the optimum fibre content for both composites was 10%wt while for impact strength, it was at 10%wt and 5%wt for bast and core fibre composites respectively.
Hard anodizing has proven to be a helpful surface treatment for aluminium alloy and typically accompanied by the growth of a porous and highly flawed oxide layer. The presence of pores on the oxide surface can be taken as an advantage in improving the surface properties. Fly-ash particles are high in SiO2 and Al2O3 content and can be utilized as inexpensive strengthening particles, which can increase the wear resistance and microhardness of composite material. It was noticed that limited research had been carried out in utilizing fly-ash as reinforcement on composite oxide coating as a wear resistance candidate. Thus, this study focused on reinforcing fly-ash on oxide coating and investigating its tribological performance. The composite oxide coating was grown on AA2017 aluminium alloy through anodizing process. To understand the effect of anodizing time and fly-ash content, the parameters were varied from 5–60 min and 0–50 g/L, respectively. The findings suggested that 60 min of anodizing time provides the highest thickness and surface roughness at 35 µm and 6.5 µm, respectively. Interestingly, composite oxide coating with 50 g/L fly-ash provides the highest coating thickness but has the lowest roughness at 52 μm and 8.2 μm, respectively. The composite oxide coatings are observed to reduce friction only for a limited time, despite their potential in significantly reducing the wear rate. The wear mechanism observed was adhesion, micro-crack, and delamination. The findings of this study are believed to provide insight on the potential of fly-ash to be a reinforcement for wear-reduction materials.
This paper presents an experimental investigation to determine the optimum composition of maleic anhydride (MAH) and dicumyl peroxide (DCP) as initiator for ethylene-propylene-diene-monomer grafted MAH (EPDM-g-MAH) compatibilizer preparation, using response surface methodology (RSM) approach. EPDM-g-MAH was prepared in the laboratory scale by melt blending method using an internal mixer. For this study, the effects of MAH (2.50 – 7.50 wt.%) and DCP (0.10 – 0.30 wt.%) towards grafting efficiency was determined. Two level full factorial design of experiment (DOE) is applied to establish the relationship between these two independent factors of raw materials. Analysis of variance (ANOVA) and the optimization menu were utilized to decide the raw materials formulation with maximum grafting efficiency. Quantitative analysis based on infra-red (IR) spectral intensity supported by 1H-NMR spectral are used to propose for EPDM-g-MAH grafting mechanism. Standard calibration curve for quantity ratio plot was exponential with R2 = 89.19%. It was found that an optimum about 8.52% of MAF grafting efficiency has been yielded with DCP factor has contributed larger effect at 67.45% of contribution effect. Anhydride stretching of grafted C=O as confirmed by FTIR peak at 1713 cm-1 and 1770 – 1792 cm-1 has responsible for MAH grafting into EPDM rubber. Based on FTIR, 1H-NMR and 2D-COSY spectral analysis, reaction mechanism for EPDM-g-MAH grafting was successfully proposed with two possible termination steps.
Static analysis in FEA is one of the important analysis need to be done in preliminary stage of an engineering design process. It shows the static condition of a design with material used and load applied. This analysis also includes the constraints and other external features that applied during the actual application of the design. In this present study, a new material which is intermetallic Nickel Aluminides (Ni3Al) is used to study how it affects the automotive wheel hub at static condition. Intermetallic Nickel Aluminides have been used in automotive industry with its superior characteristics such as lightweight, good resistance in high temperature and corrosion, and high oxidation. The samples were heat treated for 400°C, 500°C and 600°C and the results were compared with the existing materials in order to review the performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.