The impact of polymer architecture on network dynamics and self-healing is presented using bottlebrushes containing side chains that are end-functionalized with 2-ureido-4[1H]-pyrimidinone (UPy). The synthesis of these materials is straightforward through a three-step process: (1) synthesizing rubbery poly(4-methylcaprolactone) macromonomers (p4MCL–OH) with a norbornene-based initiator, (2) functionalizing the terminal hydroxyl group with UPy–isocyanate (p4MCL–UPy), and (3) statistically copolymerizing p4MCL–OH and p4MCL–UPy via ring-opening metathesis polymerization (ROMP) to form hydrogen-bonding bottlebrushes having a fraction (p) of side chains functionalized with UPy. Attaching UPy to the free end of bottlebrush side chains dilutes the impact of friction from complementary UPy interactions on segmental dynamics, leading to a much weaker dependence of the glass-transition temperature (T g) on p than observed in linear analogues, while the activation energy to dissociate UPy–UPy bonds (41–47 kJ/mol) remains mostly unchanged. Longer side chains result in a competition between reducing T g and inducing entanglements that influence hydrogen-bonded network dynamics. Increasing the backbone length extends the sticky Rouse region without affecting the network modulus (G x) or UPy–UPy dissociation time (τs). G x scales linearly with p and ranges from 27 kPa to 1.6 MPa, while τs remains nearly constant in contrast to linear telechelic ionomers, implying a similar self-healability across bottlebrush networks containing different amounts of UPy. These stretchable networks with p ≤ 0.25 undergo self-healing upon repeated rupture and melt pressing at ≤100 °C while retaining similar tensile properties. In summary, decorating bottlebrush polymers with hydrogen bonds creates opportunities to independently manipulate associative network dynamics and mechanical moduli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.