Recently human-machine digital assistants gained popularity and commonly used in question-and-answer applications and similar consumer-supporting domains. A class of more sophisticated digital assistants employing longer dialogs follow the trend, and there are several commercial platforms supporting their prototyping such as Google DialogFlow, Manychat, Chatfuel, Amazon Lex, etc. This paper explores cloud deployment of chatbots systems and their performance assessment methodologies. The performance measures includes system response delays and natural language processing capabilities. A case study platform supporting so-called deep-logic chatbots with long cycling capabilities is implemented and used for the assessment. To enable human-like conversations with a chatbot, huge training data, complex natural language understanding models are required and need to be adjusted and trained continuously. We explore implementation formats supporting auto scaling, and uninterrupted availability. In particular, we employ an architecture consisting of separate dialog management, authentication, and Natural Language Understanding (NLU) services. Finally, we present a performance evaluation of such loosely coupled chatbot system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.