Screen printing has been adopted for fabricating a wide variety of electronic devices. However, the printing defects and reliability have been an obstacle for industrialization of printed electronics. In this research, the artificial intelligence (AI) model was developed and integrated with the in-house roll-to-roll screen printing system to detect smearing defect, which is one of the main defects of screen printing. The U-Net architecture was adopted, and a total of 19 models were designed with model sizes ranging from 8E + 3 to 3E + 7 number of parameters. Their performances as validation mean Intersection over Union (IoU) were analyzed, and the optimal model was chosen with a validation mean IoU of 95.1% and a number of parameters of 8E + 6. The printed line images were evaluated by the AI model for various printing conditions, such as printed line widths, printing paste premixing, printing speeds, and printed line directions, which showed that the model could effectively detect the smearing defects. Also, the AI model capabilities were investigated for repeated printing, which demonstrated that it can be used for the reliability assessment of the screen printing process.
In printed electronics, flawless printing quality is crucial for electronic device fabrication. While printing defects may reduce the performance or even cause a failure in the electronic device, there is a challenge in quality evaluation using conventional computer vision tools for printing defect recognition. This study proposed the computer vision approach based on artificial intelligence (AI) and deep convolutional neural networks. First, the data set with printed line images was collected and labeled. Second, the overall printing quality classification model was trained and evaluated using the Grad-CAM visualization technique. Third and last, the pretrained object detection model YOLOv3 was fine-tuned for local printing defect detection. Before fine-tuning, ground truth bounding boxes were analyzed, and anchor box sizes were chosen using the k-means clustering algorithm. The overall printing quality and local defect detection AI models were integrated with the roll-based gravure offset system. This AI approach is also expected to complement more accurate printing reliability analysis firmly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.