Pea is a conventional grain-feed-grass crop in Tibet and the only high-protein legume in the region; therefore, it plays an important role in Tibetan food and grass security. Zinc finger-homeodomain (ZF-HD) belongs to a family of homozygous heterotypic cassette genes, which play an important role in plant growth, development, and response to adversity stress. Using a bioinformatics approach, 18 PsZF-HD family members were identified. These genes were distributed across seven chromosomes and two scaffold fragments, and evolutionary analysis classified them into two subgroups, MIF and ZHD. The MIF subgroup was subdivided into three subclasses (PsMIFⅠ–III), and the ZHD subgroup was subdivided into five subclasses (ZHDⅠ–V). The PsZF-HD members were named PsMIF1–PsMIF4 and PsZHD1–PsZHD14. Twelve conserved motifs and four conserved domains were identified from PsZF-HD family, of which MIF subgroup only contained one domain, while ZHD subgroup contained two types of domains. In addition, there were significant differences in the three-dimensional structures of the protein members of the two subgroups. Most PsZF-HD genes had no introns (13/18), and only five genes had one intron. Forty-five cis-acting elements were predicted and screened, involving four categories: light response, stress, hormone, and growth and development. Transcriptome analysis of different tissues during pea growth and development showed that PsZHD11, 8, 13, 14 and MIF4 were not expressed or were individually expressed in low amounts in the tissues, while the other 13 PsZF-HDs genes were differentially expressed and showed tissue preference, as seen in aboveground reproductive organs, where PsZHD6, 2, 10 and MIF1 (except immature seeds) were highly expressed. In the aerial vegetative organs, PsZHD6, 1, and 10 were significantly overexpressed, while in the underground root system, PsMIF3 was specifically overexpressed. The leaf transcriptome under a low-nitrogen environment showed that the expression levels of 17 PsZF-HDs members were upregulated in shoot organs. The leaf transcriptome analysis under a low-temperature environment showed stress-induced upregulation of PsZHD10 and one genes and down-regulation of PsZHD6 gene. These results laid the foundation for deeper exploration of the functions of the PsZF-HD genes and also improved the reference for molecular breeding for stress resistance in peas.
This study aimed to identify the Squamosa promoter Binding Protein (SBP) transcription factor from the whole genome of quinoa by analyzing its phylogenetic relationship, gene structure, chromosome location, gene replication, upstream cis-regulatory elements, tissue expression, and construction of the SBP protein interaction network, as well as the characteristics of its tissue expression pattern under salt stress. The researchers found that 23 genes of the CqSBP family were identified through bioinformatics analysis and showed diversity in their amino acid physical and chemical properties. These proteins were hydrophilic and all 23 CqSBPs were located in the nucleus. The SBP family genes were unevenly distributed across the 12 chromosomes of quinoa, mostly on the B chromosome group. The upstream cis-acting element analysis revealed the presence of 49 elements with plant hormones, stress, light response, and tissue-specific expression, and all CqSBPs contained one or more Tata box elements. Protein interaction network analysis showed that all CqSBP proteins appeared in the known interaction network of Arabidopsis. Different SBP genes were differently expressed in different organs and periods of quinoa, and SBP genes were expressed with certain tissue specificity. The expression of CqSBP showed many changes under salt stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.