This article presents a comparison of microsurgical training of groups with different background. A protocol based on the rat femoral arterial anastomoses was used to provide an objective representation of the microsurgical skills progress. The performance is assessed by consistent (x4) patency of a standardized anastomosis. Three groups of beginner residents with progressive microsurgical experience and one group of experienced surgeons were observed. The patency curve of the beginner-groups was as an abrupt learning curve, and then a plateau was reached. There was no statistically significant difference in the patency rate between the beginner-groups after their first 32 anastomoses. No statistically significant difference was noted when the patency of the advanced group was compared with beginner-groups after different numbers of anastomoses (inverse proportional with their training experience). A slight or a plateau learning curve was found among the experienced group. The learning curve is a useful adjunct in the assessment of training.
The development of stem cell technology in combination with advances in biomaterials has opened new ways of producing engineered tissue substitutes. In this study, we investigated whether the therapeutic potential of an acellular porous scaffold made of type I collagen can be improved by the addition of a powerful trophic agent in the form of mesenchymal stromal cells conditioned medium (MSC‐CM) in order to be used as an acellular scaffold for skin wound healing treatment. Our experiments showed that MSC‐CM sustained the adherence of keratinocytes and fibroblasts as well as the proliferation of keratinocytes. Moreover, MSC‐CM had chemoattractant properties for keratinocytes and endothelial cells, attributable to the content of trophic and pro‐angiogenic factors. Also, for the dermal fibroblasts cultured on collagen scaffold in the presence of MSC‐CM versus serum control, the ratio between collagen III and I mRNAs increased by 2‐fold. Furthermore, the gene expression for α‐smooth muscle actin, tissue inhibitor of metalloproteinase‐1 and 2 and matrix metalloproteinase‐14 was significantly increased by approximately 2‐fold. In conclusion, factors existing in MSC‐CM improve the colonization of collagen 3D scaffolds, by sustaining the adherence and proliferation of keratinocytes and by inducing a pro‐healing phenotype in fibroblasts.
Severe burn injuries lead to acute kidney injury (AKI) development, increasing the mortality risk up to 28–100%. In addition, there is an increase in hospitalization days and complications appearance. Various factors are responsible for acute or late AKI debut, like hypovolemia, important inflammatory response, excessive load of denatured proteins, sepsis, and severe organic dysfunction. The main measure to improve the prognosis of these patients is rapidly recognizing this condition and reversing the underlying events. For this reason, different renal biomarkers have been studied over the years for early identification of burn-induced AKI, like neutrophil gelatinase-associated lipocalin (NGAL), cystatin C, kidney injury molecule-1 (KIM-1), tissue inhibitor of metalloproteinase-2 (TIMP-2), interleukin-18 (IL-18), and insulin-like growth factor-binding protein 7 (IGFBP7). The fundamental purpose of these studies is to find a way to recognize and prevent acute renal injury progression early in order to decrease the risk of mortality and chronic kidney disease (CKD) onset.
This article presents the performed experimental measurements for connecting a sensory feedback neuro-prosthesis to the peripheral nervous system of a patient with forearm amputation. The experiments focused on the ring finger motion�s neuron control in the forearm prosthesis and on the neural path transmission of the tactile sensation coming from the pressure sensors fitted on the small finger phalanges (F5). For the ring finger, both motor control and sensory feedback are transmitted through the ulnar nerve�s motor axons, respectively by the ulnar nerve�s sensory axons. At the beginning of this study, the topography of the ulnar nerve has been performed, in order to identify the axons by which motor controls are transmitted for the small finger movement (F5) and the axons through which small finger (F5) tactile information is transmitted. A Carl Zeiss S8 electronic microscope was used to analyze the ulnar nerve�s transverse sections for an anonymous patient. Cross sections in the ulnar nerve have been examined, from the tip of the small finger (F5) to the shoulder area. The separately mappings of motor and sensory axons from the ulnar nerve at the wrist�s level and at the elbow�s level were then performed. 3D modeling was performed using CATIA software solution for mapping the axon topography in the ulnar nerve. By means of the ulnar nerve�s 3D topographic map, the optimal place for the implantation of both motor control electrodes and small finger (F5) sensory feedback electrodes were identified in the particular case of a patient with forearm amputation. Subsequently, by surgical procedures, experimental implantation of a motor control electrode for the small finger (F5) from a neuro-prosthesis was performed as well as a sensory feedback electrode for the same finger. For the next two weeks, measurements were made while the patient has been learning to move the small finger (F5) of the neuro-prosthesis and feel the tactile sensation from this finger. After these two weeks the electrodes were extracted from the patient�s stump by surgery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.