In this paper, we investigate the use of decentralized blockchain mechanisms for delivering transparent, secure, reliable, and timely energy flexibility, under the form of adaptation of energy demand profiles of Distributed Energy Prosumers, to all the stakeholders involved in the flexibility markets (Distribution System Operators primarily, retailers, aggregators, etc.). In our approach, a blockchain based distributed ledger stores in a tamper proof manner the energy prosumption information collected from Internet of Things smart metering devices, while self-enforcing smart contracts programmatically define the expected energy flexibility at the level of each prosumer, the associated rewards or penalties, and the rules for balancing the energy demand with the energy production at grid level. Consensus based validation will be used for demand response programs validation and to activate the appropriate financial settlement for the flexibility providers. The approach was validated using a prototype implemented in an Ethereum platform using energy consumption and production traces of several buildings from literature data sets. The results show that our blockchain based distributed demand side management can be used for matching energy demand and production at smart grid level, the demand response signal being followed with high accuracy, while the amount of energy flexibility needed for convergence is reduced.
Nowadays, it has been recognized that blockchain can provide the technological infrastructure for developing decentralized, secure, and reliable smart energy grid management systems. However, an open issue that slows the adoption of blockchain technology in the energy sector is the low scalability and high processing overhead when dealing with the real-time energy data collected by smart energy meters. Thus, in this paper, we propose a scalable second tier solution which combines the blockchain ledger with distributed queuing systems and NoSQL (Not Only SQL database) databases to allow the registration of energy transactions less frequently on the chain without losing the tamper-evident benefits brought by the blockchain technology. At the same time, we propose a technique for tamper-evident registration of smart meters’ energy data and associated energy transactions using digital fingerprinting which allows the energy transaction to be linked hashed-back on-chain, while the sensors data is stored off-chain. A prototype was implemented using Ethereum and smart contracts for the on-chain components while for the off-chain components we used Cassandra database and RabbitMQ messaging broker. The prototype proved to be effective in managing a settlement of energy imbalances use-case and during the evaluation conducted in simulated environment shows promising results in terms of scalability, throughput, and tampering of energy data sampled by smart energy meters.
The world is facing major societal challenges because of an aging population that is putting increasing pressure on the sustainability of care. While demand for care and social services is steadily increasing, the supply is constrained by the decreasing workforce. The development of smart, physical, social and age-friendly environments is identified by World Health Organization (WHO) as a key intervention point for enabling older adults, enabling them to remain as much possible in their residences, delay institutionalization, and ultimately, improve quality of life. In this study, we survey smart environments, machine learning and robot assistive technologies that can offer support for the independent living of older adults and provide age-friendly care services. We describe two examples of integrated care services that are using assistive technologies in innovative ways to assess and deliver of timely interventions for polypharmacy management and for social and cognitive activity support in older adults. We describe the architectural views of these services, focusing on details about technology usage, end-user interaction flows and data models that are developed or enhanced to achieve the envisioned objective of healthier, safer, more independent and socially connected older people.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.