Tandem catalysis is an attractive strategy to intensify chemical technologies. However, simultaneous control over the individual and concerted catalyst performances poses a challenge. We demonstrate that enhanced pore transport within a Co/Al O Fischer-Tropsch (FT) catalyst with hierarchical porosity enables its tandem integration with a Pt/ZSM-5 zeolitic hydrotreating catalyst in a spatially distant fashion that allows for catalyst-specific temperature adjustment. Nevertheless, this system resembles the case of close active-site proximity by mitigating secondary reactions of primary FT α-olefin products. This approach enables the combination of in situ dewaxing with a minimum production of gaseous hydrocarbons (18 wt %) and an up to twofold higher (50 wt %) selectivity to middle distillates compared to tandem pairs based on benchmark mesoporous FT catalysts. An overall 80 % selectivity to liquid hydrocarbons from syngas is attained in one step, attesting to the potential of this strategy for increasing the carbon efficiency in intensified gas-to-liquid technologies.
The single-step production of wax-free liquid hydrocarbons from syngas (H2 + CO) via integration of Fischer–Trospch (FT) and hydrocracking catalysts represents an attractive approach toward process intensification in compact gas-to-liquid technologies. Despite current, intensive efforts on the development of hybrid (multifunctional) catalysts to this end, not much is known about the reactivity of different FT primary products on hydrocracking catalysts under syngas. Using model compounds, the individual and collective reactivities of n-paraffin and α-olefin FT primary products were systematically studied on a Pt/nano-H-ZSM-5 hydrocracking catalyst under H2 (standard hydrocracking) and syngas (in situ hydroprocessing) atmospheres. Under H2, both reactants show indistinguishable reactivity as rapid olefin hydrogenation precedes hydrocracking. Under syngas, however, inhibition of (de)hydrogenation functionalities by CO poisoning of metal sites leads to a notable divergence of the reaction pathways for n-paraffins and α-olefins. Under these conditions, α-olefins showed enhanced reactivity, as an initial dehydrogenative activation step is not required, and contributed to moderate secondary cracking, likely via enhanced competitive adsorption on the acid sites. Besides, CO poisoning restored the intrinsic activity of the zeolite for the oligomerization of short-chain (α-)olefins, providing an additional net chain-growth pathway, which contributes to reducing the overall yield to undesired gas (C4–) hydrocarbons. These findings emphasize the key role of not only the chain-length distribution, but also the olefinic content of the FT primary hydrocarbons for the ultimate product distribution, and suggest guidelines for the design of multifunctional catalysts for the single-step synthesis of liquid hydrocarbons from syngas
A one‐step approach was developed for the production of mesoporous sulfonated carbon materials by means of an aerosol synthesis. Nebulizing a clear aqueous solution of sucrose and sulfuric acid through a heated oven leads to subsequent dehydration, carbonization and sulfonation of the carbohydrate structure, in less than two seconds residence time. Acid site concentrations ranging from 0.1 to 0.6 mmol g−1 can be obtained. Porosity can easily be introduced via salt templating, and can be adjusted by varying the loading and type of salt used. The highest surface area was obtained with Li2SO4, giving a BET surface area of 506 m2 g−1 and a mesopore size distribution between 2 and 8 nm. Fructose dehydration and inulin hydrolysis showed that the porous materials synthesized by salt templating are more active than the bulk ones, especially for inulin hydrolysis, for which the initial activity is enhanced by a factor of seven, making these materials competitive with the most active commercial resins.
Surface‐ and bulk‐phosphated ceria catalysts were prepared and studied in propane oxidative dehydrogenation (ODH) at 823 and 873 K. The catalysts were characterized by N2 adsorption at 77 K, XRD, TEM, and diffuse reflectance IR Fourier transform (DRIFT), Raman, X‐ray photoelectron (XPS), and energy dispersive X‐ray (EDX) spectroscopies. Both series of catalysts presented an increase in the ODH selectivity with respect to pure ceria mainly at the expense of total oxidation selectivity. Thus, the selectivity to propene was approximately 74 % with surface‐phosphated catalysts and 62 % with bulk‐phosphated catalysts. For the surface‐phosphated samples, P is confined to the surface and subsurface regions of the ceria particles, whereas P is also dispersed in the bulk of the oxide in the bulk‐phosphated samples. Finally, all the characterization techniques led us to the conclusion that Ce4+ cations that interact with P are responsible for the observed increase in the ODH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.