At present, it is necessary to identify specific biochemical, molecular, and genetic markers that can reliably aid in screening digestive cancer and correlate with the degree of disease development. Has-miR-129-5p is a small, non-coding molecule of RNA, circulating in plasma, gastric juice, and other biological fluids; it plays a protective role in tumoral growth, metastasis, etc. Furthermore, it is involved in various diseases, from the development of digestive cancer in cases of downregulation to neurodegenerative diseases and depression. Methods: We examined meta-analyses, research, and studies related to miR-129-5-p involved in digestive cancer and its implications in cancer processes, as well as metastasis, and described its implications in neurological diseases. Conclusions: Our review outlines that miR-129-5p is a significant controller of different pathways, genes, and proteins and influences different diseases. Some important pathways include the WNT and PI3K/AKT/mTOR pathways; their dysregulation results in digestive neoplasia and neurodegenerative diseases.
Background: The Mureș River Basin is a long-term heavily polluted watershed, in a situation of climate changes with decreasing water flow and related decreasing dilution capacity. Here, a mixture of emerging pollutants such as pharmaceuticals were targeted to reveal potential risks regarding the natural lotic ecosystems. Due to the continuous discharge into the environment, pharmaceuticals are gaining persistent organic pollutant characteristics and are considered emerging pollutants. Based on the hazard quotient, this research highlights the dangerous concentrations of carbamazepine, ibuprofen, furosemide, and enalapril in river water. Results: High levels of four pharmaceutical compounds (carbamazepine, ibuprofen, furosemide, and enalapril) and some of their derived metabolites (enalaprilat, carboxyibuprofen, 1-hydroxyibuprofen, and 2-hydroxyibuprofen) were reported in our study in the Mureș River Basin. Overall, pharmaceutical concentrations were found to be highest in the wastewater treatment plant (WWTP) effluent, median downstream of the WWTP, and lowest upstream of the WWTP, as was expected. For all pharmaceutical compounds tested, we recorded concentrations above the limit of quantification (LOQ) in at least one of the sites tested. Carbamazepine exhibited the highest mean values upstream, downstream, and at the WWTP. As expected, the highest concentrations for all the studied pharmaceutical compounds were detected in the WWTP effluent. All Hazard Quotient (HQ) values were below one (on a logarithmic scale in base 10), with the highest values in the WWTP and the lowest in the river upstream of the WWTP. The HQ intervals were in the same range for furosemide, carbamazepine, and ibuprofen at each of the three different sites: upstream WWTP effluent, and downstream. The interval for enalapril stands out as having the lowest HQ at all three sites. Conclusions: Based on these results, the large and complex hydrographical system Mureș River Basin was transformed from a grey area, with little information about pharmaceutical contamination, to a hotspot in terms of contamination with emerging pollutants. Pharmaceutical compound concentrations were found to be the highest in WWTP effluents. The WWTP effluent concentrations were among the highest in Europe, indicating that treatment plants are the primary source of water pollution with pharmaceuticals compounds. The detected levels were higher than the safety limit for carbamazepine and ibuprofen. The determined HQ values imply that the measured levels do pose a threat to the environment for the studied pharmaceuticals. Based on the obtained results, human communities can assess, monitor, predict, and adapt in time to these already-present regional challenges and risks for sustainable use of natural resources, including water and associated products and services.
Numerous sections of the Mureş River vary in terms of the abundance of nitrates, ammonia, and orthophosphates; and of correlated lotic sediment bacterial microbiome structures in terms of both diversity and abundance. This highlights the great versatility of microbiomes in being influenced by the physical-chemical characteristics of environments and their spatial changes. Bacteria microbiomes exhibit dynamic and shifting potential and significant tendencies toward self-organization and self-adaptation. These typical features represent an essential ecologic basis for lotic systems having to do with the use and reuse of various kinds of environmental resource as chemical substances. In this respect, trophic processes assure the river ecosystem optimum health ecologic status dynamic and trend, to be reached. The flexibility of shifting bacterial microbiomes is crucial in maintaining this ecological context’s vital role in biogeochemically sustaining other taxonomic groups, which are spatially and temporally continuous. This is especially important for nutrient cycle processes, even for rivers with high levels of negative human impact, in promoting a functional lotic system.
Water is a risk factor for epidemics of waterborne diseases with effects on human health. In 2019, new viral pneumonia cases occurred in China and spread worldwide. The aim of this study was to assess the feasibility and accuracy of a wastewater-based epidemiological (WBE) monitoring tool in a SARS-CoV-2 hot spot (Sibiu City metropolitan area), namely to highlight the correlation between the number of infections on the days of sampling and the amount of viral RNA detected in wastewater. Wastewater samples were collected once a week, and viral RNA was extracted and quantified. In parallel, the daily number of SARS-CoV-2 infections was obtained from the local council. The correlation between the number of infections and viruses detected in sewage was measured by Pearson correlation coefficients. The results show the amount of viral RNA in the wastewater is directly correlated with the number of infections reported in the week up to the sampling day and also the number of infections reported for the sampling day. Moreover, correlation coefficients show the amount of viral RNA in wastewater increases in advance of the increase in reported infection cases. Therefore, WBE can be used as a tool for monitoring virus spread trends in human communities and can help anticipate the trend of this type of viral infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.