It is commonly agreed that accounts receivable (AR) can be a source of financial difficulty for firms when they are not efficiently managed and are underperforming. Experience across multiple industries shows that effective management of AR and overall financial performance of firms are positively correlated. In this paper we address the problem of reducing outstanding receivables through improvements in the collections strategy. Specifically, we demonstrate how supervised learning can be used to build models for predicting the payment outcomes of newlycreated invoices, thus enabling customized collection actions tailored for each invoice or customer. Our models can predict with high accuracy if an invoice will be paid on time or not and can provide estimates of the magnitude of the delay. We illustrate our techniques in the context of real-world transaction data from multiple firms. Finally, simulation results show that our approach can reduce collection time up to a factor of four compared to a baseline that is not model-driven.
Subdivision-based representations are recognized as important tools for the generation of high-quality surfaces for Computer Graphics. In this paper we describe two parameterizations of Catmull-Clark subdivision surfaces that allow a variety of algorithms designed for other types of parametric surfaces (i.e., B-splines) to be directly applied to subdivision surfaces. In contrast with the natural parameterization of subdivision surfaces characterized by diverging first order derivatives around extraordinary vertices of valence higher than four, the derivatives associated with our proposed methods are defined everywhere on the surface. This is especially important for Computer-Aided Design (CAD) applications that seek to address the limitations of NURBS-based representations through the more flexible subdivision framework.
We present a mesh simplification strategy for generating polygonal meshes with well-shaped faces in the presence of constraints. We introduce a novel combination of metrics to drive the simplification process while generating high-quality meshes. Our method handles the creation of coarse triangle or triangle/quad meshes with tagged features. The metrics favor "ideal" vertex valences (six or four) and element shapes (equilateral triangles or rectangles). We illustrate this method in the context of remeshing and texture-mapping scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.