In this paper, we investigate what effects heat treatment can have on potentiodynamically electrodeposited high-entropy thin film (HEA) CoCrFeMnNi alloys. We focused our study on the corrosion resistance in synthetic seawater, corroborated with the structure and microstructure of these thin films. Thin films of HEA alloys were deposited on a copper foil substrate, using an electrolyte based on the organic system dimethyl-sulfoxide (DMSO-(CH3)2SO)-acetonitrile (AN-CH3CN) (in a volume ratio of 4:1), which contains LiClO4 as electrolyte support and chloride salts of CoCl2, CrCl3 × 6H2O, FeCl2 × 4H2O, MnCl2 × 4H2O and NiCl2 × 6H2O. Using MatCalc PC software, based on the CALPHAD method, the structure and characteristics of the HEA system were investigated, and thermodynamic and kinetic criteria were calculated. The modeling process generated in the body-centered-cubic (BCC) or face-centered-cubic (FCC) structures a series of optimal compositions that are appropriate to be used in anticorrosive and tribological applications in a marine environment. Electrochemical measurements were carried out in an aerated artificial seawater solution at ambient temperature. In the experimental media, HEA thin films proved to have good corrosion resistance and were even better than the copper substrate. Corrosion resistance was improved after heat treatment, as shown by polarization and EIS tests. The structure and microstructure of HEA thin films before and after corrosion in artificial seawater were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The XRD data showed no significant changes in the structure of HEA heat-treated thin films after the corrosion in saline media. The data obtained by polarization and ESI are supported by results from SEM-EDS. This complex study reveals that, for HEA thin films, heat treatment leads to an increase in corrosion resistance. So, this finding suggests that thermal annealing is an appropriate method for improving the corrosion performance of HEA thin films.
Lightweight complex concentrated alloys (LWCCA), composed of elements with low density, have become a great area of interest due to the high demand in a large number of applications. Previous research on LWCCAs was focused on high entropy multicomponent alloy systems that provide low density and high capability of solid solution formation. Present research introduces two alloy systems (Al-Cu-Si-Zn-Mg and Al-Mn-Zn-Mg-Si) that contain readily available and inexpensive starting materials and have potential for solid solution formation structures. For the selection of appropriate compositions, authors applied semi-empirical criteria and optimization software. Specialized modeling software (MatCalc) was used to determine probable alloy structures by CALPHAD, non-equilibrium solidification and kinetic simulations. The selected alloys were prepared in an induction furnace. Specimens were heat treated to provide stable structures. Physicochemical, microstructural, and mechanical characterization was performed for the selected alloy compositions. Modeling and experimental results indicated solid solution-based structures in the as-cast and heat-treated samples. Several intermetallic phases were present at higher concentrations than in the conventional alloys. Alloys presented a brittle structure with compression strength of 486–618 MPa and hardness of 268–283 HV. The potential for uniform intermetallic phase distribution in the selected alloys makes them good candidates for applications were low weight and high resistance is required.
Materials used in the marine industry are exposed to extreme conditions, so it is necessary to meet remarkable characteristics, such as mechanical resistance, low density, and good corrosion resistance. The challenging environment requires continuous performance improvements, so this work is focused on developing new materials with superior properties, using the electrochemical deposition technique, which are convenient for marine engineering. High-entropy alloys have been attracting tremendous interest in many applications, due to their simple crystal structures and advantageous physical-chemical properties, such as high strength, anti-corrosion, erosion, and electro-magnetic capabilities. To identify the most appropriate compositions, MatCalc software was used to predict the structure and characteristics of the required materials, and thermodynamic and kinetic criteria calculations were performed. The modelling processes generated a series of optimal compositions in the AlCrCuFeNi alloy system, that are suitable to be used in anticorrosive and tribological applications. The composition and morphology of the obtained high entropy alloy thin films revealed a uniform structure, with a small grain profile. The corrosion resistance was investigated in artificial seawater to observe the behavior of the newly developed materials in demanding conditions, and the results showed improved results compared to the copper foil substrate.
The paper is proposing a mini-review on the capability of the new complex concentrated alloys (CCAs) to substitute or reduce the use of critical raw materials in applications for extreme conditions. Aspects regarding the regulations and expectations formulated by the European Union in the most recent reports on the critical raw materials were presented concisely. A general evaluation was performed on the CCAs concept and the research directions. The advantages of using critical metals for particular applications were presented to acknowledge the difficulty in the substitution of such elements with other materials. In order to establish the level of involvement of CCAs in the reduction of critical metal in extreme environment applications, a presentation was made of the previous achievements in the field and the potential for the reduction of critical metal content through the use of multi-component compositions.
The paper studies new materials for brake disks used in car manufacturing. The materials used in the manufacturing of the brake disc must adapt and correlate with the challenges of current society. There is a tremendous interest in the development of a material that has high strength, good heat transfer, corrosion resistance and low density, in order to withstand high-breaking forces, high heat and various adverse environment. Low-density materials improve fuel efficiency and environmental impact. Complex concentrated alloys (CCA) are metallic element mixtures with multi-principal elements, which can respond promisingly to this challenge with their variety of properties. Several compositions were studied through thermodynamic criteria calculations (entropy of mixing, enthalpy of mixing, lambda coefficient, etc.) and CALPHAD modeling, in order to determine appropriate structures. The selected compositions were obtained in an induction furnace with a protective atmosphere and then subjected to an annealing process. Alloy samples presented uniform phase distribution, a high-melting temperature (over 1000 °C), high hardness (1000–1400 HV), good corrosion resistance in 3.5 wt.% NaCl solution (under 0.2 mm/year) and a low density (under 6 g/cm3).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.