Diverse nuclear factor‐κB subunits mediate opposite effects of extracellular signals on neuron survival. While RelA is activated by neurotoxic agents, c‐Rel drives neuroprotective effects. In brain ischaemia RelA and p50 factors rapidly activate, but how they associate with c‐Rel to form active dimers and contribute to the changes in diverse dimer activation for neuron susceptibility is unknown. We show that in both cortical neurons exposed to oxygen glucose deprivation (OGD) and mice subjected to brain ischaemia, activation of p50/RelA was associated with inhibition of c‐Rel/RelA dimer and no change p50/c‐Rel. Targeting c‐Rel and RelA expression revealed that c‐Rel dimers reduced while p50/RelA enhanced neuronal susceptibility to anoxia. Activation of p50/RelA complex is known to induce the pro‐apoptotic Bim and Noxa genes. We now show that c‐Rel‐containing dimers, p50/c‐Rel and RelA/c‐Rel, but not p50/RelA, promoted Bcl‐xL transcription. Accordingly, the OGD exposure induced Bim, but reduced Bcl‐xL promoter activity and decreased the content of endogenous Bcl‐xL protein. These findings demonstrate that within the same neuronal cell, the balance between activation of p50/RelA and c‐Rel‐containing complexes fine tunes the threshold of neuron vulnerability to the ischaemic insult. Selective targeting of different dimers will unravel new approaches to limit ischaemia‐associated apoptosis.
In acute stroke, neuronal apoptosis and inflammation are considered to be important mechanisms on the road to tissue loss and neurological deficit. Both apoptosis and inflammation depend on gene transcription. We have identified a signalling pathway that regulates transcription of genes involved in apoptosis and inflammation. In a mouse model of focal cerebral ischaemia, there is an induction of the cytokine TWEAK (tumour necrosis factor-like weak inducer of apoptosis) and its membrane receptor Fn14. TWEAK promotes neuronal cell death and activates the transcription factor NF-kappaB (nuclear factor kappaB) through the upstream kinase IKK [IkappaB (inhibitory kappaB) kinase]. In vivo, IKK is activated in neurons. Neuron-specific deletion of the subunit IKK2 or inhibition of IKK activity reduced the infarct size and neuronal cell loss. A pharmacological inhibitor of IKK also showed neuroprotective properties. IKK-dependent ischaemic brain damage is likely to be mediated by NF-kappaB, because neuron-specific inhibition of NF-kappaB through transgenic expression of the NF-kappaB superrepressor was found to reduce the infarct size. In summary, there is evidence that IKK/NF-kappaB signalling contributes to ischaemic brain damage and may provide suitable drug targets for the treatment of stroke.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.