This paper investigates the dynamic behaviour of a two-axle bogie under the influence of interference between the vertical vibrations of bounce and pitch—generated by the track irregularities—and the roll horizontal vibrations—excited by the asymmetry in the suspension damping that can be caused by the failure of a damper during exploitation. For this purpose, the results of numerical simulations are being used, as developed on the basis of two original models of the bogie-track system, namely the model of the bogie with symmetrical damping of the suspension—track and the model of the bogie with asymmetrical damping of the suspension—track, respectively. The dynamic behaviour of the bogie with symmetrical/asymmetrical damping is evaluated in five reference points of the bogie regime of vibrations, based on the Root Mean Square of acceleration (RMS acceleration). The results thus obtained highlight the characteristics regarding the symmetry/asymmetry of the regime of vibrations in the bogie reference points and the location of the critical point of the bogie regime of vibrations. The influence of the suspension asymmetry upon the dynamic behaviour of the bogie is analysed in an original manner, hence leading to conclusions that might establish themselves as the starting point of a new fault detection method of the dampers in the primary suspension of the railway vehicle.
The evaluation of the vibration behavior of railway vehicle car bodies based on the results of numerical simulations requires the adoption of an appropriate theoretical model of the suspension which considers the important factors that influence the vibration level of the car body. In this paper, the influence of the secondary suspension model on the vertical vibration behavior of the railway vehicle car body is investigated, based on the results of numerical simulations on the frequency response functions of the acceleration, the power spectral density of the acceleration and the root mean square of the acceleration of the car body. Numerical simulation applications are developed based on a rigid-flexible coupled vehicle model with seven degrees of freedom, corresponding to car body vibration modes: bounce, pitch, and first vertical bending mode, and bogie vibration modes: bounce and pitch. Four different models of secondary suspension are integrated into the vehicle model, namely a reference model and four analysis models. Analysis models include systems through which the pitch vibration of the bogies is transmitted to the car body, influencing its vibration behavior and, respectively, a system that takes the relative angular displacement between the car body and the bogie and a system that models the transmission system of the longitudinal forces between the bogie and the car body are analyzed. The effects of these two systems on the vibration behavior of the railway vehicle car body are analyzed both for each system separately and together. In the conclusions of the paper, the influence of the secondary suspension model on the vibration level at the resonance frequencies of the vertical bending of the car body and the pitch of the bogie is pointed out. It also highlights the important contribution of the transmission system of the longitudinal forces between the bogie and the car body in transmitting pitch vibrations of the bogies to the car body, with effects on the vibration level of the car body at high speeds.
The purpose of this paper is to present applications and design elements of scale models of the carbody of railway vehicles integrated in experimental laboratory systems to verify the effectiveness of the methods to reduce vertical bending vibration of the carbody. In the first part of the paper, some applications of such experimental systems are presented, which include different scale models of the railway vehicle carbody. In the second part of the paper, the structure and dimensioning elements of a new demonstrative experimental system, specially designed by the authors of the present paper for testing the functionality of an original method of reducing the vertical bending vibrations of the carbody of railway vehicles, are presented. This method is based on an innovative approach that involves the use of a passive system consisting of two bars rigidly mounted on the longitudinal beams of the carbody underframe, having the role of opposing the bending of the carbody. The main element of the demonstrative experimental system is the scale model of the vehicle carbody, reduced to a beam, on which the two bars, called anti-bending bars, are mounted. For the dimensioning of the experimental model of the carbody and the anti-bending bars, original methodologies are developed in which several conditions are involved. In the case of the dimensioning of the experimental model of the carbody, the conditions refer to the convenient adoption of the scaling factor of the dimensions of the real carbody from the perspective of the practical realization of the experimental model of the carbody, ensuring the buckling stability of the demonstrative experimental system, achieving natural frequency of the vertical bending of the real carbody and avoiding the interference of the bounce vibration with the vertical bending vibration of the demonstrative experimental model of the carbody. The dimensions of the anti-bending bars are established from the condition that the vertical bending frequency of the experimental model of the carbody is outside the range of sensitivity of the human body to vertical vibration. Additionally, the natural frequency of the vertical bending vibration of the anti-bending bars must be chosen to avoid interference with the vertical bending vibration of the experimental model of the carbody. The effectiveness of the anti-bending bars in reducing the vertical bending vibration of the experimental model of the carbody is investigated with the help of numerical simulation results developed based on an original theoretical model of the experimental model of the carbody with anti-bending bars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.